Orthogonal Drawings of Graphs and Their Relatives Part 2 – Orthogonal drawings in the variable embedding setting Walter Didimo University of Perugia

walter.didimo@unipg.it

Summary

- The SQPR-tree data structure
- Bend-minimization of planar 3-graphs – Efficient algorithms
- Bend-minimization of planar 4-graphs
 - -Exponential-time approaches

SPQR-trees

Triconnected components and SPQR-trees

- A biconnected graph can be decomposed into triconnected components
 - -J. E. Hopcroft, R. E. Tarjan: Dividing a Graph into Triconnected Components. SIAM J. Comput. 2(3): 135-158 (1973)
- If G is a planar graph, the planar embeddings of G depend on the planar embeddings of its triconnected components
 - the SPQR-tree data structure provides an implicit representation of the triconnected components of G and of all planar embeddings of G
 [G. Di Battista, R. Tamassia: On-Line Planarity Testing. SIAM J. Comput. 25(5): 956-997 (1996)]

(5)

(6)

- If each G_i is a triple bond or (more in general) consists of a set of parallel edges only
- If each G_i is a triangle or (more in general) a simple cycle

components

component

component

component

Bend-minimum orthogonal drawings of planar 3-graphs

Problem: planar **3-graph** \implies planar **bend-minimum** orthogonal drawing

plane 3-graph

bend-min orthogonal drawing (fixed embedding) bend-min orthogonal drawing (variable embedding)

Bend-min orthogonal drawings: fixed embedding

• plane 4-graphs $-O(n^2 \log n)$ [Tamassia (1987)] $-O(n^{7/4} \sqrt{\log n})$ [Garg, Tamassia (2001)] $-O(n^{1.5})$ [Cornelsen, Karrenbauer (2011)]

based on min-cost flow

plane 3-graphs
 O(n) [Rahman, Nishizeki (2002)]

not based on flow techniques

Bend-min orthogonal drawings: variable embedding

• planar 4-graphs: NP-hard [Garg, Tamassia (2001)]

Theorem. Let G be an n-vertex (simple) planar 3-graph. There exists an $O(n^2)$ -time algorithm that computes a bend-minimum orthogonal drawing of G, with at most two bends per edge.

P. S. the algorithm takes O(n) time if we require that a prescribed edge of G is on the external face

W. Didimo, G. Liotta, M. Patrignani: Bend-Minimum Orthogonal Drawings in Quadratic Time. Graph Drawing 2018: 481-494

input: G biconnected planar 3-graph with n vertices **output**: bend-min orthogonal drawing Γ of G

- for each edge *e* of G
 - $\Gamma_{e} \leftarrow \text{bend-min orthogonal drawing of G with } e$ on the external face
- return $\Gamma \leftarrow \min$ -bends $\{\Gamma_e\}$

```
\Gamma_e is computed in O(n) time
```

Strategy for the linear-time algorithm

- Incremental construction of Γ_e
 - 1. bottom-up visit of the SPQR-tree + *orthogonal spirality*
 - similar to [*G. Di Battista, G. Liotta, F. Vargiu*: Spirality and optimal orthogonal drawings, SIAM J. Comput., 27 (1998)]
 - 2. new properties of bend-min orthogonal drawings of planar 3-graphs
 - 3. non-flow based computation of bend-min orthogonal drawings for the rigid components

Orthogonal representations: reminder

orthogonal representation = equivalence class of orthogonal drawings with the same vertex angles and the same sequence of bends along the edges

 a drawing of an orthogonal representation can be computed in linear time

orthogonal component = orthogonal representation H_{μ} of a component G_{μ}

Η

1

Η

t(p) = turn number = |#left turns – # right turns| (along p)

P- and R-components: Representative shapes μ = P-node or R-node H_{μ} is D-shaped \Leftrightarrow t(p₁) = 0 and t(p_r) = 2 or vice versa H_{ii} is X-shaped $\Leftrightarrow t(p_i) = t(p_r) = 1$ H_{II} is C-shaped \Leftrightarrow t(p_I) = 4 and t(p_r) = 2 or vice versa H_{II} is L-shaped \Leftrightarrow t(p_I) = 3 and t(p_r) = 1 or vice versa

 μ = inner S-node

Lemma. All paths between the poles of an orthogonal component H_{μ} have the same turn number

 μ = inner S-node

Lemma. All paths between the poles of an orthogonal component H_{μ} have the same turn number

 μ = root child S-node

The definition of k-spiral and the lemma are extended by considering an external alias vertex in place of a pole with in-degree 2

Equivalent orthogonal components

- H_{μ} and H'_{μ} = two distinct orthogonal representations of G_{μ}
- H_{μ} and H'_{μ} are equivalent if: $-\mu$ is a P- or an R-node and H_{μ} , H'_{μ} have the same representative shape $-\mu$ is an S-node and H_{μ} , H'_{μ} have the same spirality

Key-Lemma. Every biconnected planar 3-graph with a given edge *e* admits a bend-min orthogonal representation with *e* on the external face such that:

- **O1.** every edge has at most two bends
- **O2.** every inner P- or R-component is D- or X-shaped; if the root child is a P- or an R-component, it is either D-, C-, or L-shaped
- **O3.** every S-component has spirality at most 4

Key-Lemma. Every biconnected planar 3-graph with a given edge *e* admits a bend-min orthogonal representation with *e* on the external face such that:

- **O1.** every edge has at most two bends
- **O2.** every inner P- or R-component is D- or X-shaped; if the root child is a P- or an R-component, it is either D-, C-, or L-shaped
- **O3.** every S-component has spirality at most 4

Proof ingredients: partially based on a characterization of no-bend orthogonal representations [Rahman, Nishizeki, Naznin 2003]

Key-Lemma. Every biconnected planar 3-graph with a given edge *e* admits a bend-min orthogonal representation with *e* on the external face such that:

O1. every edge has at most two bends

O2. every inner P- or R-component is D- or X-shaped; if the root child is a P- or an R-component, it is either D-, C-, or L-shaped

O3. every S-component has spirality at most 4

Consequence: we can restrict our algorithm to search for a bend-min representation that satisfies O1, O2, and O3.

\begin{Characterization of no-bend drawings}

[Rahman, Nishizeki, Naznin, JGAA 2003] = [RNN'03]

no-bend orthogonal drawing of G

biconnected plane 3-graph

Characterization of no-bend drawings

Theorem [RNN'03]. Let G be a biconnected plane
3-graph. G admits a no-bend orthogonal drawing ⇔
(i) the external cycle of G has <u>at least</u> 4 degree-2 vertices
(ii) each k-legged cycle of G has <u>at least</u> (4-k) degree-2 vertices

Definition: we call **bad** a 2-legged or a 3-legged cycle that does not satisfy (ii)

\end{Characterization of no-bend drawings}

Key-Lemma. Let G be a biconnected planar 3-graph with a given edge *e*; G admits a bend-min orthogonal representation with *e* on the external face and having these properties:

O1. at most two bends per edge

O2. every inner P- or R-component is D- or X-shaped; if the root child is a P- or an R-component, it is either D-, C-, or L-shaped

O3. every S-component has spirality at most 4

Notation

Key-Lemma: O1

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends

Key-Lemma: O1

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of <u>H</u> corresponding to the bends of g

Key-Lemma: O1

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of <u>H</u> corresponding to the bends of g
- <u>H</u> has no-bend \Rightarrow <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]

Key-Lemma: 01

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of <u>H</u> corresponding to the bends of g
- <u>H</u> has no-bend \Rightarrow <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]

Case 1: g is an internal edge

Key-Lemma: O1

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of <u>H</u> corresponding to the bends of g
- <u>H</u> has no-bend \Rightarrow <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]

Key-Lemma: O1

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of <u>H</u> corresponding to the bends of g
- <u>H</u> has no-bend \Rightarrow <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]

Key-Lemma: O1

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of <u>H</u> corresponding to the bends of g
- <u>H</u> has no-bend \Rightarrow <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]

Case 2: g is an external edge (call C₀(G) the external boundary of G)

• **Case 2.1.** $C_0(\underline{G})$ has more than 4 degree-2 vertices

contradiction as before

Key-Lemma: O1

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of <u>H</u> corresponding to the bends of g
- <u>H</u> has no-bend \Rightarrow <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]

Case 2: g is an external edge (call $C_0(G)$ the external boundary of G)

• **Case 2.2.** C₀(<u>G</u>) has exactly 4 degree-2 vertices

Key-Lemma. Let G be a biconnected planar 3-graph with a given edge *e*; G admits a bend-min orthogonal representation with *e* on the external face and having these properties:

O1. at most two bends per edge

O2. every inner P- or R-component is D- or X-shaped; if the root child is a P- or an R-component, it is either D-, C-, or L-shaped

O3. every S-component has spirality at most 4

Key-Lemma: O2

Proof of O2 (inner P- or R-components are D- or X-shaped)

- H = bend-min representation of G with *e* on the external face and property O1
- <u>H</u> has no-bend \Rightarrow <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]

Key-Lemma: O2

Proof of O2 (inner P- or R-components are D- or X-shaped)

- H = bend-min representation of G with *e* on the external face and property O1
- <u>H</u> has no-bend \Rightarrow <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]
- [RNN'03] gives an algorithm that computes a no-bend representation <u>H</u>' of <u>G</u> such that every 2-legged (and 3-legged) cycle is either D-shaped or X-shaped

Key-Lemma: O2

Proof of O2 (inner P- or R-components are D- or X-shaped)

- H = bend-min representation of G with *e* on the external face and property O1
- <u>H</u> has no-bend \Rightarrow <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]
- [RNN'03] gives an algorithm that computes a no-bend representation <u>H</u>' of <u>G</u> such that every 2-legged (and 3-legged) cycle is either D-shaped or X-shaped

... each inner P- and R-component is a 2-legged cycle in <u>G</u>

Proof of O2 (root child P- or R-components are D-, C-, or L-shaped)

• H = bend-min representation of G with *e* on the external face and property O1

Key-Lemma. Let G be a biconnected planar 3-graph with a given edge *e*; G admits a bend-min orthogonal representation with *e* on the external face and having these properties:

O1. at most two bends per edge

O2. every inner P- or R-component is D- or X-shaped; if the root child is a P- or an R-component, it is either D-, C-, or L-shaped

O3. every S-component has spirality at most 4

Key-Lemma: O3

Proof of O3 (S-components have spirality at most 4)

- H = bend-min representation of G with *e* on the external face and properties O1 and O2;
- <u>H</u> was computed with the [RNN'03] alg, which we call NoBend-Alg
- we prove that every S-component in <u>H</u> (and thus in H) has spirality at most 4

\begin{NoBend-Alg}

Step 1: choose 4 external corners

four vertices of degree 2 are used as corners (in our case, these vertices may be obtained by subdividing edges)

Step 1: choose 4 external corners

four vertices of degree 2 are used as corners (in our case, these vertices may be obtained by subdividing edges)

Step 2: find maximal bad cycles w.r.t. the corners

- 2-legged cycles not passing through (at least) 2 corners
- 3-legged cycles not passing through (at least) 1 corner

Step 2: find maximal bad cycles w.r.t. the corners

G

13

12

(11

8

3

2

6

2-legged cycles not passing through (at least) 2 corners
3-legged cycles not passing through (at least) 1 corner

bad 2-legged,
 but not maximal

bad 2-legged maximal

Step 6: ... and plug the components (14) (13 (10)(14

(12)

(10

\end{NoBend-Alg}

Proof of O3 (inner S-components have spirality at most 4)

Case 1. the S-component is not inside a maximal bad cycle and all its edges are internal

Proof of O3 (inner S-components have spirality at most 4)

Case 2. the S-component is inside a maximal bad cycle that traverses the component

Proof of O3 (inner S-components have spirality at most 4)

Case 2. the S-component is inside a maximal bad cycle that traverses the component

Proof of O3 (a root child S-component has spirality at most 4)

Higher values of spirality may only increase the number of bends

Algorithm

- **input**: biconnected planar 3-graph G with a reference edge *e*
- **output**: bend-min representation H of G with *e* on the external face

- 1. construct the SPQR-tree T of G with respect to *e*
- 2. visit the nodes μ of T **bottom-up**:
 - $-\mu$ inner node \Rightarrow store in μ a candidate set of bend-min representations of G_{μ} one for each distinct representative shape, thanks to the substitution theorem
 - μ the root child \Rightarrow construct H by suitably merging *e* with the candidate representations stored at the children of μ ; consider {0, 1, 2} bends for *e*, thanks to O1 of the key-lemma

Candidate sets for the tree nodes

- P/R-node: the cheapest D- and X-shaped representations for the inner nodes and the cheapest D-, C-, and L-shaped representations for the root child —thanks to O2 of the key-lemma
- S-node: the cheapest representation for each value of spirality in {0, 1, 2, 3, 4} -thanks to O3 of the key-lemma

Each child of an R-node is either a Q- or an S-node

[RNN'99] S. Rahman, S.-I. Nakano, T. Nishizeki:
A Linear Algorithm for Bend-Optimal Orthogonal Drawings
of Triconnected Cubic Plane Graphs. J. Graph Algorithms Appl. 3(4): 31-62 (1999)

 $O(n_{\mu})$ time

#(extra bends) = max{0, spirality - (#D-shaped + #Q-nodes - 1)}

 $O(n_{\mu})$ time

• Is there a subquadratic-time algorithm to compute a bend-minimum orthogonal drawing of a planar 3-graph?

• Is there a subquadratic-time algorithm to compute a bend-minimum orthogonal drawing of a planar 3-graph?

Ingredients:

- new data structure for the rigid components
- labeling procedure for the candidate sets
- reusability principle for the SPQR-tree nodes

Bend-minimum orthogonal drawings of planar 4-graphs

Bend-min of planar 4-graphs

- Branch-and-bound algorithm for a biconnected graph G
 - P. Bertolazzi, G. Di Battista, W. Didimo: Computing Orthogonal Drawings with the Minimum Number of Bends. IEEE Trans. Computers 49(8): 826-840 (2000)
- Ingredients:
 - -enumeration scheme for the planar embeddings of G
 - -effective lower bounds on the number of bends
 - -simple upper bounds on the number of bends

Branch-and-Bound algorithm

- mb \leftarrow + ∞ // minimum number of bends known so far
- visit the search tree from the root (use a BFS or DFS)
- when a node x is visited:
 - compute an upper bound *ub* on the number of bends of an orthogonal representation with embedding in the subtree rooted at x
 - If (ub < mb) then $mb \leftarrow ub$
 - compute a lower bound *lb* on the number of bends of an orthogonal representation with embedding in the subtree rooted at x
 - If (lb > mb) then cut x and its subtree
- return mb

b_{ER}(**H**)= # of bends of H along the real edges

Lower bound: Preliminary lemma

H' = representation of G' with minimum bends on ER
H = bend-min representation of G that preserves the embedding of G'

 $b_{ER}(H') \le b_{ER}(H)$

b_{ER}(H') can be
computed by
imposing cost 0 for
the bends on the
virtual edges in
Tamassia's flow
network

Lower bound: Recursive approach

partial graph G'

- lb₁
- **Ib_i**= lower bounds on the # of bends in the pertinent graph of a component G_i

 $Ib = b_{FR}(H') + \Sigma_i Ib_i$

the set of **Ib**_i can be computed through a bottom-up visit of the SPQR-tree in a pre-processing step

Lower bound: Further improvement

If some lb_i is zero, replace the corresponding virtual edge with a simple path π between the poles of G_i and regard the edges of π as real edges

 $lb = b_{ER}(H') + \Sigma_i lb_i$

Some experimental data

density/vertices	10	20	30	40	50	60	70	80	90	100
1.1	6	10	10	25	25	10	10	4	13.33	0
1.2	37.5	32.38	27	26.33	41.3	38.67	32.1	17.32	33.28	31.76
1.4	20.82	22.31	19.99	19.92	22.35	28.99	24.88	16.59	20.36	14.2
1.6	19.75	15.05	20.76	12.16	13.14	12.4	15.92	11.87	14.61	12.65
1.8	13.04	11.05	10.46	10.08	8.15	9.94	4.07	4.77	4.21	

% avg. improvement on the number of bends w.r.p. to a bend-minimum orthogonal drawing in the fixed embedding setting

Additional reading

• *P. Mutzel, R. Weiskircher*: Bend Minimization in Planar Orthogonal Drawings Using Integer Programming. SIAM Journal on Optimization 17(3): 665-687 (2006)

Bend-min of planar 4-graphs: Open problem

 Problem: Let G be a biconnected 4-planar graph with a given combinatorial embedding. is there an o(n^{2.5})-time algorithm that computes a bend-minimum orthogonal drawing of G overall possible choices of the external faces? (the combinatorial embedding is preserved)