Orthogonal Drawings of Graphs and Their Relatives
Part 2 - Orthogonal drawings in the variable embedding setting

Walter Didimo
University of Perugia
walter.didimo@unipg.it

Summary

- The SQPR-tree data structure
- Bend-minimization of planar 3-graphs
- Efficient algorithms
- Bend-minimization of planar 4-graphs
-Exponential-time approaches

SPQR-trees

Triconnected components and SPQR-trees

- A biconnected graph can be decomposed into triconnected components
-J. E. Hopcroft, R. E. Tarjan: Dividing a Graph into Triconnected Components. SIAM J. Comput. 2(3): 135-158 (1973)
- If G is a planar graph, the planar embeddings of G depend on the planar embeddings of its triconnected components
-the SPQR-tree data structure provides an implicit representation of the triconnected components of G and of all planar embeddings of G [G. Di Battista, R. Tamassia: On-Line Planarity Testing. SIAM J. Comput. 25(5): 956-997 (1996)]

Separation pair and split operation

-o-O Recursive split operation

Recursive split operation

Recursive split operation

Recursive split operation - output

this decomposition is not unique!!!
(4)
(5)
(6)
(6)

Recursive split operation - output

(1)
(1)
(4)
triangle

(4)

(5)
(6)
graph

Merge operation

- If each G_{i} is a triple bond or (more in general) consists of a set of parallel edges only
- If each G_{i} is a triangle or (more in general) a simple cycle

Recursive merge operation

(4)
4
4

Recursive merge operation - final result

 components
(4)

this set of graphs is uniquely defined!!!
triconnected
(7)

Triconnected components

rigid component

series component

0

Towards SPQR-trees

O-O Towards SPQR-trees

Towards SPQR-trees

0
 SPQR-trees

SPQR-trees

SPQR-trees

SPQR-trees

Changing the embedding

Changing the embedding

Changing the embedding

Changing the embedding

Bend-minimum orthogonal drawings of planar 3-graphs

The problem

Problem: planar 3-graph \Longleftrightarrow planar bend-minimum orthogonal drawing

plane 3-graph

bend-min orthogonal drawing (fixed embedding)

bend-min orthogonal drawing (variable embedding)

History reminder

Bend-min orthogonal drawings: fixed embedding

- plane 4-graphs

```
-O(n2 log n) [Tamassia (1987)]
-O(n7/4}\sqrt{}{\operatorname{log}n) [Garg, Tamassia (2001)]
-O(n}\mp@subsup{n}{}{1.5})\quad[Cornelsen, Karrenbauer (2011)]
```

- plane 3-graphs

O(n)
[Rahman, Nishizeki (2002)]
not based on
flow techniques

History reminder

Bend-min orthogonal drawings: variable embedding

- planar 4-graphs: NP-hard [Garg, Tamassia (2001)]
- planar 3-graphs

O(n5 $\log \mathrm{n})$	$\mathrm{O}\left(\mathrm{n}^{4.5}\right)$
Di Battista-Liotta-	consequence of
Vargiu	Cornelsen-Karrenbauer

2018

$O\left(n^{2}\right)$
next slides
?

Result

Theorem. Let G be an n-vertex (simple) planar 3-graph. There exists an $\mathrm{O}\left(\mathrm{n}^{2}\right)$-time algorithm that computes a bend-minimum orthogonal drawing of G , with at most two bends per edge.
P. S. the algorithm takes $O(n)$ time if we require that a prescribed edge of G is on the external face
W. Didimo, G. Liotta, M. Patrignani: Bend-Minimum Orthogonal Drawings in Quadratic Time. Graph Drawing 2018: 481-494

General strategy for biconnected graphs

input: G biconnected planar 3-graph with n vertices output: bend-min orthogonal drawing Γ of G

- for each edge e of G
$-\Gamma_{e} \leftarrow$ bend-min orthogonal drawing of G with e on the external face
- return $\Gamma \leftarrow$ min-bends $\left\{\Gamma_{\mathrm{e}}\right\}$
Γ_{e} is computed in $\mathrm{O}(\mathrm{n})$ time

Strategy for the linear-time algorithm

- Incremental construction of Γ_{e}

1. bottom-up visit of the SPQR-tree + orthogonal spirality

- similar to [G. Di Battista, G. Liotta, F. Vargiu: Spirality and optimal
orthogonal drawings, SIAM J. Comput., 27 (1998)]

2. new properties of bend-min orthogonal drawings of planar 3-graphs
3. non-flow based computation of bend-min orthogonal drawings for the rigid components

Orthogonal representations: reminder

orthogonal representation = equivalence class of orthogonal drawings with the same vertex angles and the same sequence of bends along the edges

- a drawing of an orthogonal representation can be computed in linear time
orthogonal component = orthogonal representation H_{μ} of a component G_{μ}

Orthogonal components: example

Orthogonal components: examples

Orthogonal components: examples

Orthogonal components: examples

Parallel (orthogonal) component

Turn number and contour paths

$\mu=$ node of the SPQR-tree

$t(p)=$ turn number $=\mid \#$ left turns $-\#$ right turns \mid (along p)
H_{μ} is C-shaped $\Leftrightarrow t\left(p_{1}\right)=4$ and $t\left(p_{r}\right)=2$ or vice versa
H_{μ} is L-shaped $\Leftrightarrow t\left(p_{1}\right)=3$ and $t\left(p_{r}\right)=1$ or vice versa

Inner S-components: spirality

$\mu=$ inner S-node
Lemma. All paths between the poles of an orthogonal component H_{μ} have the same turn number

Inner S-components: spirality

$\mu=$ inner S-node
Lemma. All paths between the poles of an orthogonal component H_{μ} have the same turn number

$t(p)=k$
H_{μ} is k-spiral
H_{μ} has spirality k

Root child S-components: spirality

$\mu=$ root child S-node

The definition of k -spiral and the lemma are extended by considering an external alias vertex in place of a pole with in-degree 2

Equivalent orthogonal components

- H_{μ} and $\mathrm{H}_{\mu}^{\prime}=$ two distinct orthogonal representations of G_{μ}
- H_{μ} and $\mathrm{H}_{\mu}^{\prime}$ are equivalent if:
$-\mu$ is a P - or an R -node and $\mathrm{H}_{\mu}, \mathrm{H}_{\mu}^{\prime}$ have the same representative shape
$-\mu$ is an S-node and $H_{\mu}, H_{\mu}^{\prime}$ have the same spirality

Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are interchangeable

Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are interchangeable

Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are interchangeable

Equivalent orthogonal components

Theorem (substitution). Equivalent orthogonal components are interchangeable

Key lemma

Key-Lemma. Every biconnected planar 3-graph with a given edge e admits a bend-min orthogonal representation with e on the external face such that:

O1. every edge has at most two bends
O2. every inner P - or R -component is D - or X -shaped; if the root child is a P - or an R -component, it is either $\mathrm{D}-, \mathrm{C}$-, or L-shaped
O3. every S-component has spirality at most 4

Key lemma

Key-Lemma. Every biconnected planar 3-graph with a given edge e admits a bend-min orthogonal representation with e on the external face such that:

O1. every edge has at most two bends
O2. every inner P - or R-component is D - or X -shaped; if the root child is a P - or an R-component, it is either $\mathrm{D}-, \mathrm{C}$-, or L-shaped
O3. every S-component has spirality at most 4

Key lemma: Consequence

Key-Lemma. Every biconnected planar 3-graph with a given edge e admits a bend-min orthogonal representation with e on the external face such that:

O1. every edge has at most two bends
O2. every inner P - or R-component is D - or X -shaped; if the root child is a P - or an R-component, it is either $\mathrm{D}-, \mathrm{C}$-, or L-shaped
O3. every S-component has spirality at most 4
Consequence: we can restrict our algorithm to search for a bend-min representation that satisfies $\mathrm{O} 1, \mathrm{O} 2$, and O 3.
\begin\{Characterization of no-bend drawings\} }

Characterization of no-bend drawings

[Rahman, Nishizeki, Naznin, JGAA 2003] = [RNN'03]

biconnected plane 3-graph

no-bend orthogonal drawing of G

Characterization of no-bend drawings

Theorem [RNN'03]. Let G be a biconnected plane 3-graph. G admits a no-bend orthogonal drawing \Leftrightarrow
(i) the external cycle of G has at least 4 degree- 2 vertices
(ii) each k-legged cycle of G has at least (4-k) degree-2 vertices

Definition: we call bad a 2-legged or a 3-legged cycle that does not satisfy (ii)
\end\{Characterization of no-bend drawings\} }

Key-Lemma: O1

Key-Lemma. Let G be a biconnected planar 3-graph with a given edge e; G admits a bend-min orthogonal representation with e on the external face and having these properties:

1. at most two bends per edge

O2. every inner P- or R-component is D- or X-shaped; if the root child is a P - or an R-component, it is either $\mathrm{D}-, \mathrm{C}$-, or L-shaped
O3. every S-component has spirality at most 4

Key-Lemma: O1

Proof of $\mathbf{0 1}$ (at most two bends per edge)
Notation

smoothing v

Key-Lemma: O1

Proof of $\mathbf{0 1}$ (at most two bends per edge)

- $\mathrm{H}=$ bend-min representation of G with e on the external face
- $g=$ edge of H with (at least) three bends

Key-Lemma: O1

Proof of $\mathbf{0 1}$ (at most two bends per edge)

- $\mathrm{H}=$ bend-min representation of G with e on the external face
- $g=$ edge of H with (at least) three bends
- \quad v1, v2, v3 = the three bend-vertices of \underline{H} corresponding to the bends of g

Key-Lemma: O1

Proof of $\mathbf{0 1}$ (at most two bends per edge)

- $\mathrm{H}=$ bend-min representation of G with e on the external face
- $g=$ edge of H with (at least) three bends
- $v 1, ~ v 2, ~ v 3=$ the three bend-vertices of \underline{H} corresponding to the bends of g - \underline{H} has no-bend $\Rightarrow \underline{G}$ satisfies (i) and (ii) of Th. [RNN'03]

Key-Lemma: O1

Proof of $\mathbf{0 1}$ (at most two bends per edge)

- $H=$ bend-min representation of G with e on the external face
- $g=$ edge of H with (at least) three bends
- $\quad \mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3=$ the three bend-vertices of \underline{H} corresponding to the bends of g
- \underline{H} has no-bend $\Rightarrow \underline{G}$ satisfies (i) and (ii) of Th. [RNN'03]

Case 1: g is an internal edge

Key-Lemma: O1

Proof of $\mathbf{0 1}$ (at most two bends per edge)

- $\mathrm{H}=$ bend-min representation of G with e on the external face
- $g=$ edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of \underline{H} corresponding to the bends of g
- \underline{H} has no-bend $\Rightarrow \underline{G}$ satisfies (i) and (ii) of Th. [RNN'03]

Case 1: g is an internal edge

still satisfies (i)

Key-Lemma: O1

Proof of $\mathbf{0 1}$ (at most two bends per edge)

- $\mathrm{H}=$ bend-min representation of G with e on the external face
- $g=$ edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of \underline{H} corresponding to the bends of g
- \underline{H} has no-bend $\Rightarrow \underline{G}$ satisfies (i) and (ii) of Th. [RNN'03]

Case 1: g is an internal edge

Key-Lemma: O1

Proof of $\mathbf{0 1}$ (at most two bends per edge)

- $\mathrm{H}=$ bend-min representation of G with e on the external face
- $g=$ edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of \underline{H} corresponding to the bends of g
- \underline{H} has no-bend $\Rightarrow \underline{G}$ satisfies (i) and (ii) of Th. [RNN'03]

Case 2: g is an external edge (call $C_{0}(G)$ the external boundary of G)

- Case 2.1. $\mathrm{C}_{0}(\underline{\mathrm{G}})$ has more than 4 degree- 2 vertices

contradiction as before

Key-Lemma: O1

Proof of $\mathbf{0 1}$ (at most two bends per edge)

- $\mathrm{H}=$ bend-min representation of G with e on the external face
- $g=$ edge of H with (at least) three bends
- $\quad \mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3=$ the three bend-vertices of \underline{H} corresponding to the bends of g
- \underline{H} has no-bend $\Rightarrow \underline{G}$ satisfies (i) and (ii) of Th. [RNN'03]

Case 2: g is an external edge (call $C_{0}(G)$ the external boundary of G)

- Case 2.2. $\mathrm{C}_{0}(\underline{\mathrm{G}})$ has exactly 4 degree- 2 vertices

Key-Lemma: O2

Key-Lemma. Let G be a biconnected planar 3-graph with a given edge e; G admits a bend-min orthogonal representation with e on the external face and having these properties:

01. at most two bends per edge

O2. every inner P - or R-component is D - or X -shaped; if the root child is a P - or an R-component, it is either $\mathrm{D}-, \mathrm{C}$-, or L-shaped
O3. every S-component has spirality at most 4

Key-Lemma: O2

Proof of $\mathbf{O 2}$ (inner P- or R-components are D- or X-shaped)

- $\mathrm{H}=$ bend-min representation of G with e on the external face and property 01
- \underline{H} has no-bend $\Rightarrow \underline{G}$ satisfies (i) and (ii) of Th. [RNN'03]

Key-Lemma: O2

Proof of $\mathbf{0 2}$ (inner P- or R-components are D- or X-shaped)

- $\mathrm{H}=$ bend-min representation of G with e on the external face and property 01
- \underline{H} has no-bend $\Rightarrow \underline{G}$ satisfies (i) and (ii) of Th. [RNN'03]
- [RNN'03] gives an algorithm that computes a no-bend representation \underline{H} ' of \underline{G} such that every 2-legged (and 3-legged) cycle is either D-shaped or X -shaped

Key-Lemma: O2

Proof of $\mathbf{O 2}$ (inner P- or R-components are D- or X-shaped)

- $\mathrm{H}=$ bend-min representation of G with e on the external face and property O 1
- \underline{H} has no-bend $\Rightarrow \underline{G}$ satisfies (i) and (ii) of Th. [RNN'03]
- [RNN'03] gives an algorithm that computes a no-bend representation \underline{H} ' of \underline{G} such that every 2-legged (and 3-legged) cycle is either D-shaped or X -shaped

... each inner P - and R -component is a 2-legged cycle in \underline{G}

Key-Lemma: O2

Proof of $\mathbf{0 2}$ (root child P- or R-components are D-, C-, or L-shaped)

- $\mathrm{H}=$ bend-min representation of G with e on the external face and property O 1

e has 0 bends

e has 1 bend

e has 2 bends

e has 3 bends

Key-Lemma: O3

Key-Lemma. Let G be a biconnected planar 3-graph with a given edge e; G admits a bend-min orthogonal representation with e on the external face and having these properties:

O1. at most two bends per edge
O2. every inner P - or R -component is D - or X -shaped; if the root child is a P - or an R-component, it is either $\mathrm{D}-, \mathrm{C}$-, or L-shaped
O3. every S-component has spirality at most 4

Key-Lemma: O3

Proof of O3 (S-components have spirality at most 4)

- $H=$ bend-min representation of G with e on the external face and properties O 1 and O2;
- \underline{H} was computed with the [RNN'03] alg, which we call NoBend-Alg
- we prove that every S-component in \underline{H} (and thus in H) has spirality at most 4
\begin\{NoBend-Alg\} }

Step 1: choose 4 external corners

four vertices of degree 2 are used as corners (in our case, these vertices may be obtained by subdividing edges)

Step 1: choose 4 external corners

four vertices of degree 2 are used as corners (in our case, these vertices may be obtained by subdividing edges)

Step 2: find maximal bad cycles w.r.t. the corners

- 2-legged cycles not passing through (at least) 2 corners
- 3-legged cycles not passing through (at least) 1 corner

Step 2: find maximal bad cycles w.r.t. the corners

Step 3: collapse maximal bad cycles

Step 4: compute a rectangular representation

Step 5: recourse into the collapsed nodes

Step 6: ... and plug the components

\end\{NoBend-Alg\} }

Key-Lemma: O3

Proof of $\mathbf{0 3}$ (inner S -components have spirality at most 4)

Case 1. the S-component is not inside a maximal bad cycle and all its edges are internal

Key-Lemma: O3

Proof of $\mathbf{0 3}$ (inner S -components have spirality at most 4)

Case 2. the S-component is inside a maximal bad cycle that traverses the component

Key-Lemma: O3

Proof of $\mathbf{0 3}$ (inner S -components have spirality at most 4)

Case 2. the S-component is inside a maximal bad cycle that traverses the component

Key-Lemma: O3

Proof of O3 (a root child S-component has spirality at most 4)

Higher values of spirality may only increase the number of bends

Algorithm

- input: biconnected planar 3-graph G with a reference edge e
- output: bend-min representation H of G with e on the external face

1. construct the SPQR-tree T of G with respect to e
2. visit the nodes μ of T bottom-up:
$-\mu$ inner node \Rightarrow store in μ a candidate set of bend-min representations of $G_{\mu-}^{-}$ one for each distinct representative shape, thanks to the substitution theorem
$-\mu$ the root child \Rightarrow construct H by suitably merging e with the candidate representations stored at the children of μ; consider $\{0,1,2\}$ bends for e, thanks to 01 of the key-lemma

Candidate sets for the tree nodes

- Q-node: a representation for each number of bends in $\{0,1,2\}$
-thanks to O 1 of the key-lemma

- P/R-node: the cheapest D - and X-shaped representations for the inner nodes and the cheapest $\mathrm{D}-, \mathrm{C}-$, and L -shaped representations for the root child -thanks to O 2 of the key-lemma
- S-node: the cheapest representation for each value of spirality in $\{0,1,2,3,4\}$
-thanks to O3 of the key-lemma

Candidate set of a P-node

Candidate set of an R-node

Each child of an R-node is either a Q-or an S-node

Candidate set of an R-node (sketch)

$\mathrm{O}\left(\mathrm{n}_{\mu}\right)$ time
[RNN'פ9] S. Rahman, S.-I. Nakano, T. Nishizeki:
A Linear Algorithm for Bend-Optimal Orthogonal Drawings
of Triconnected Cubic Plane Graphs. J. Graph Algorithms Appl. 3(4): 31-62 (1999)

Candidate set of an S-node

Candidate set of an S-node

\#(extra bends) $=\max \{0$, spirality $-(\# D-$ shaped + \#Q-nodes -1$)\}$

Question

- Is there a subquadratic-time algorithm to compute a bend-minimum orthogonal drawing of a planar 3-graph?

Question

- Is there a subquadratic-time algorithm to compute a bend-minimum orthogonal drawing of a planar 3-graph?

Ingredients:

- new data structure for the rigid components
- labeling procedure for the candidate sets
- reusability principle for the SPQR-tree nodes
$\mathrm{O}(\mathrm{n})$-time algorithm

Bend-minimum orthogonal drawings of planar 4-graphs

Bend-min of planar 4-graphs

- Branch-and-bound algorithm for a biconnected graph G
- P. Bertolazzi, G. Di Battista, W. Didimo: Computing Orthogonal Drawings with the Minimum Number of Bends. IEEE Trans. Computers 49(8): 826840 (2000)
- Ingredients:
- enumeration scheme for the planar embeddings of G
-effective lower bounds on the number of bends
-simple upper bounds on the number of bends

Enumeration scheme

Enumeration scheme

$$
\mathrm{x}=\begin{array}{|l|l|l|}
& \begin{array}{ll}
0 / 1 & 0 / 1 \\
\hline
\end{array} & \begin{array}{|l|l|l}
0 / 1 \\
0 & 0 & 0 \\
\hline
\end{array} \\
\hline
\end{array}
$$

Enumeration scheme

$$
\mathrm{x}=\begin{array}{|l|l|l|}
& \begin{array}{ll}
0 / 1 & 0 / 1 \\
\hline
\end{array} & \begin{array}{|l|l|l}
0 / 1 \\
1 & 0 & 0 \\
\hline
\end{array} \\
\hline
\end{array}
$$

$\operatorname{skel}\left(\mu_{3}\right)$

Enumeration scheme

Enumeration scheme

Branch-and-Bound algorithm

- mb $\leftarrow+\infty$ // minimum number of bends known so far
- visit the search tree from the root (use a BFS or DFS)
- when a node x is visited:
- compute an upper bound $u b$ on the number of bends of an orthogonal representation with embedding in the subtree rooted at x
- If ($u b<\mathrm{mb}$) then $\mathrm{mb} \leftarrow \mathrm{ub}$
- compute a lower bound $l b$ on the number of bends of an orthogonal representation with embedding in the subtree rooted at x
- If ($\mathrm{lb}>\mathrm{mb}$) then cut x and its subtree
- return mb

Lower bound: Notation

partial graph

EV = set of virtual edges
$E R=$ set of real edges
$\mathbf{b}_{\mathrm{ER}}(\mathrm{H})=\#$ of bends of H along the real edges

Lower bound: Preliminary lemma

partial graph G^{\prime}

- $\mathrm{H}^{\prime}=$ representation of G^{\prime} with minimum bends on $E R$
- $\mathrm{H}=$ bend-min representation of G that preserves the embedding of G^{\prime}

$$
\mathbf{b}_{\mathrm{ER}}\left(\mathrm{H}^{\prime}\right) \leq \mathbf{b}_{\mathrm{ER}}(\mathrm{H})
$$

$b_{E R}(H)=3$
$\mathrm{b}_{\mathrm{ER}}\left(\mathrm{H}^{\prime}\right)$ can be computed by imposing cost 0 for the bends on the virtual edges in Tamassia's flow network

$$
b_{E R}\left(H^{\prime}\right)=2
$$

Lower bound: Recursive approach

partial graph G^{\prime}

- $\mathbf{l b}_{\mathbf{i}}=$ lower bounds on the \# of bends in the pertinent graph of a component G_{i}

$$
l b=b_{E R}\left(H^{\prime}\right)+\Sigma_{i} l b_{i}
$$

the set of $\mathrm{lb}_{\mathbf{i}}$ can be computed through a bottom-up visit of the SPQR-tree in a pre-processing step

Lower bound: Further improvement

partial graph G^{\prime}

- If some lb_{i} is zero, replace the corresponding virtual edge with a simple path π between the poles of G_{i} and regard the edges of π as real edges

$$
l b=b_{E R}\left(H^{\prime}\right)+\Sigma_{i} l b_{i}
$$

Some experimental data

density/vertices	10	20	30	40	50	60	70	80	90	100
1.1	6	10	10	25	25	10	10	4	13.33	0
1.2	37.5	32.38	27	26.33	41.3	38.67	32.1	17.32	33.28	31.76
1.4	20.82	22.31	19.99	19.92	22.35	28.99	24.88	16.59	20.36	14.2
1.6	19.75	15.05	20.76	12.16	13.14	12.4	15.92	11.87	14.61	12.65
1.8	13.04	11.05	10.46	10.08	8.15	9.94	4.07	4.77	4.21	

\% avg. improvement on the number of bends w.r.p. to a bend-minimum orthogonal drawing in the fixed embedding setting

Additional reading

- P. Mutzel, R. Weiskircher: Bend Minimization in Planar Orthogonal Drawings Using Integer Programming. SIAM Journal on Optimization 17(3): 665-687 (2006)

Bend-min of planar 4-graphs: Open problem

- Problem: Let G be a biconnected 4-planar graph with a given combinatorial embedding. is there an o($\left.\mathrm{n}^{2.5}\right)$-time algorithm that computes a bend-minimum orthogonal drawing of G overall possible choices of the external faces? (the combinatorial embedding is preserved)

