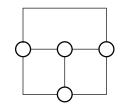
Orthogonal Drawings of Graphs and Their Relatives Part 2 – Orthogonal drawings in the variable embedding setting Walter Didimo University of Perugia

walter.didimo@unipg.it

# Summary

- The SQPR-tree data structure
- Bend-minimization of planar 3-graphs – Efficient algorithms
- Bend-minimization of planar 4-graphs
  - -Exponential-time approaches

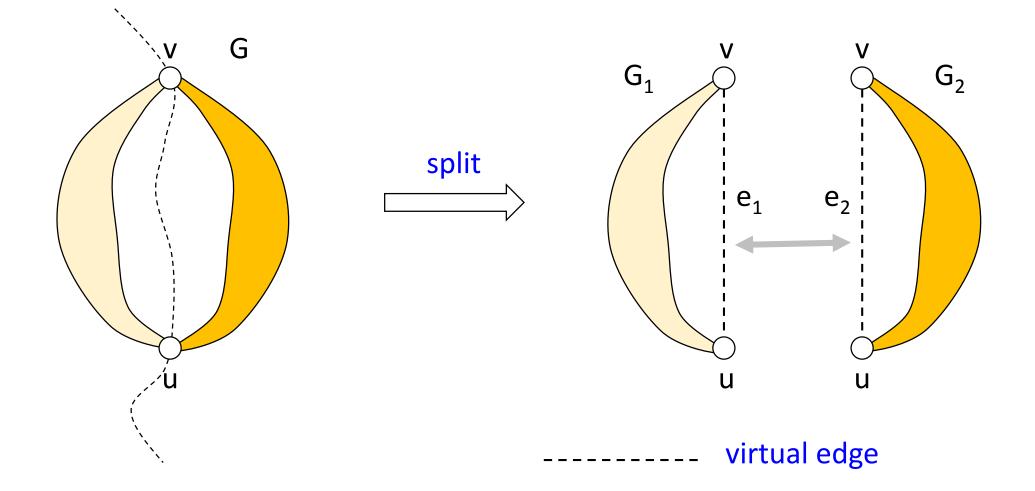


### **SPQR-trees**

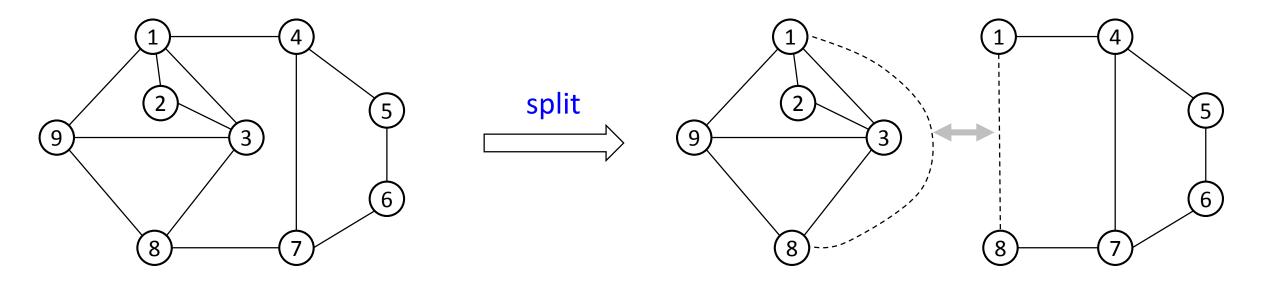
## Triconnected components and SPQR-trees

- A biconnected graph can be decomposed into triconnected components
  - -J. E. Hopcroft, R. E. Tarjan: Dividing a Graph into Triconnected Components. SIAM J. Comput. 2(3): 135-158 (1973)
- If G is a planar graph, the planar embeddings of G depend on the planar embeddings of its triconnected components
  - the SPQR-tree data structure provides an implicit representation of the triconnected components of G and of all planar embeddings of G
     [G. Di Battista, R. Tamassia: On-Line Planarity Testing. SIAM J. Comput. 25(5): 956-997 (1996)]

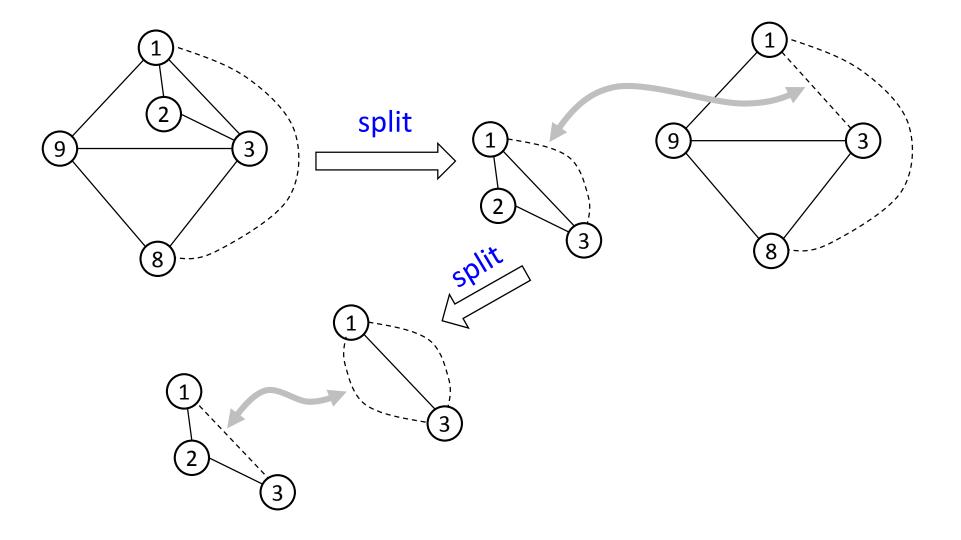


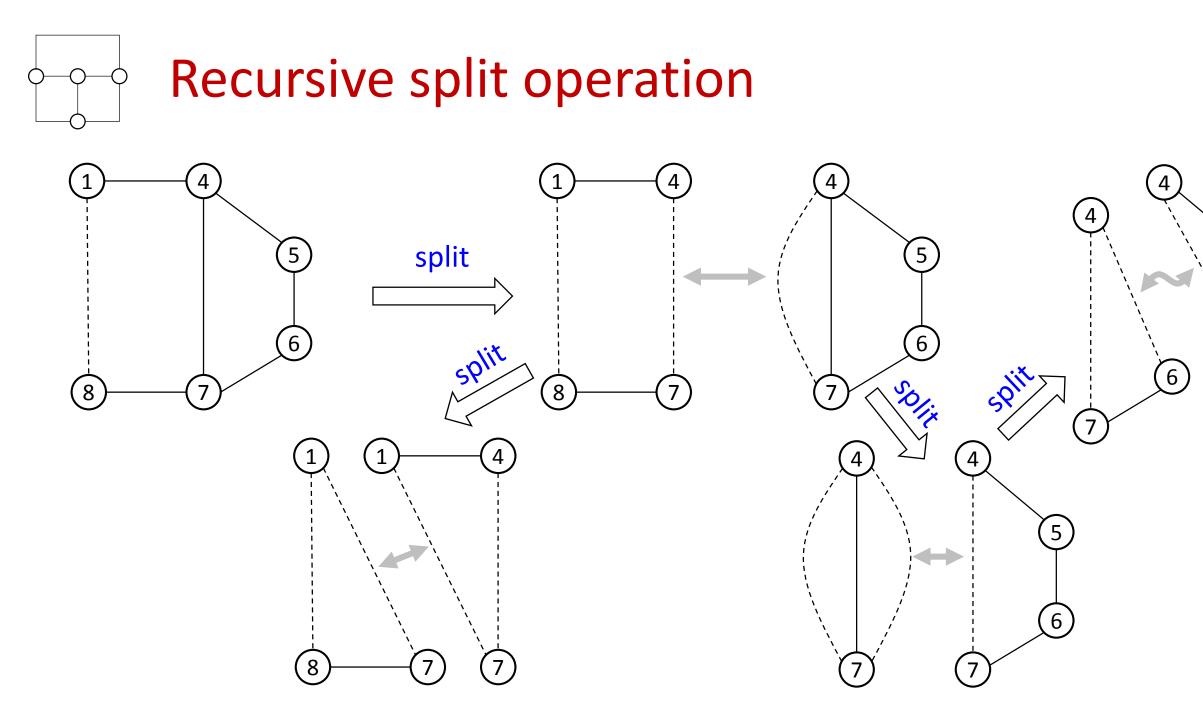






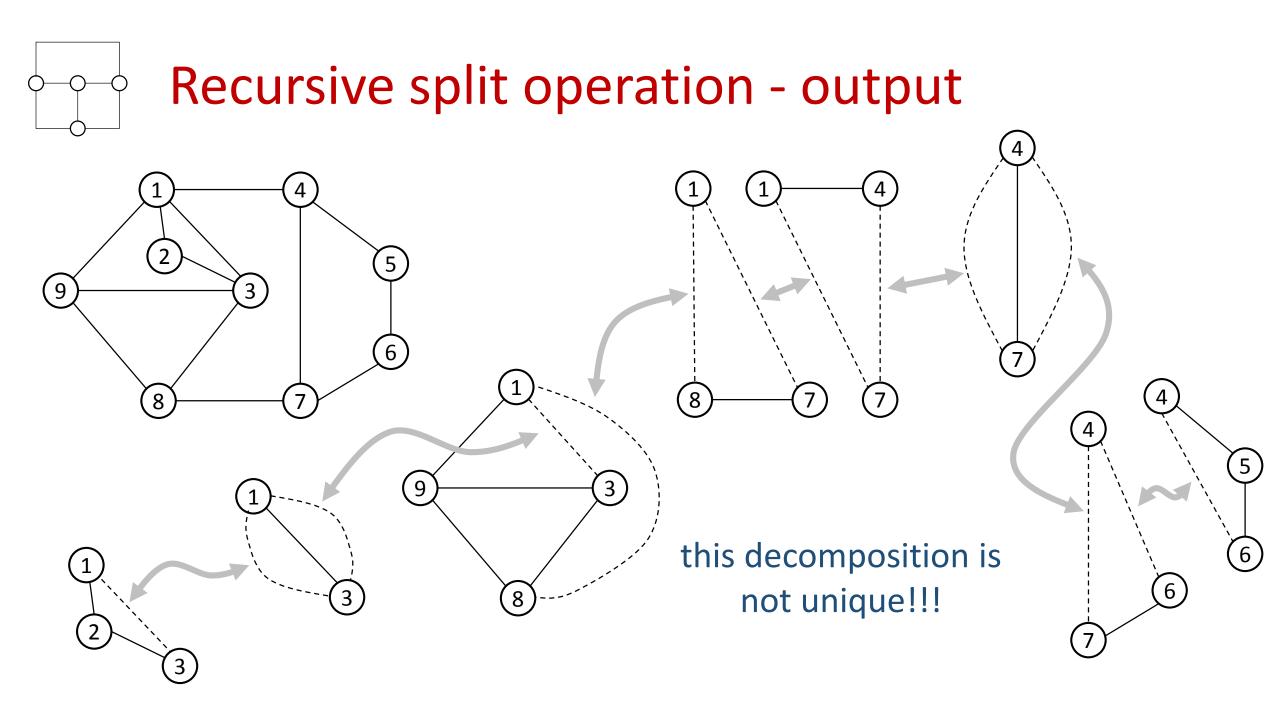


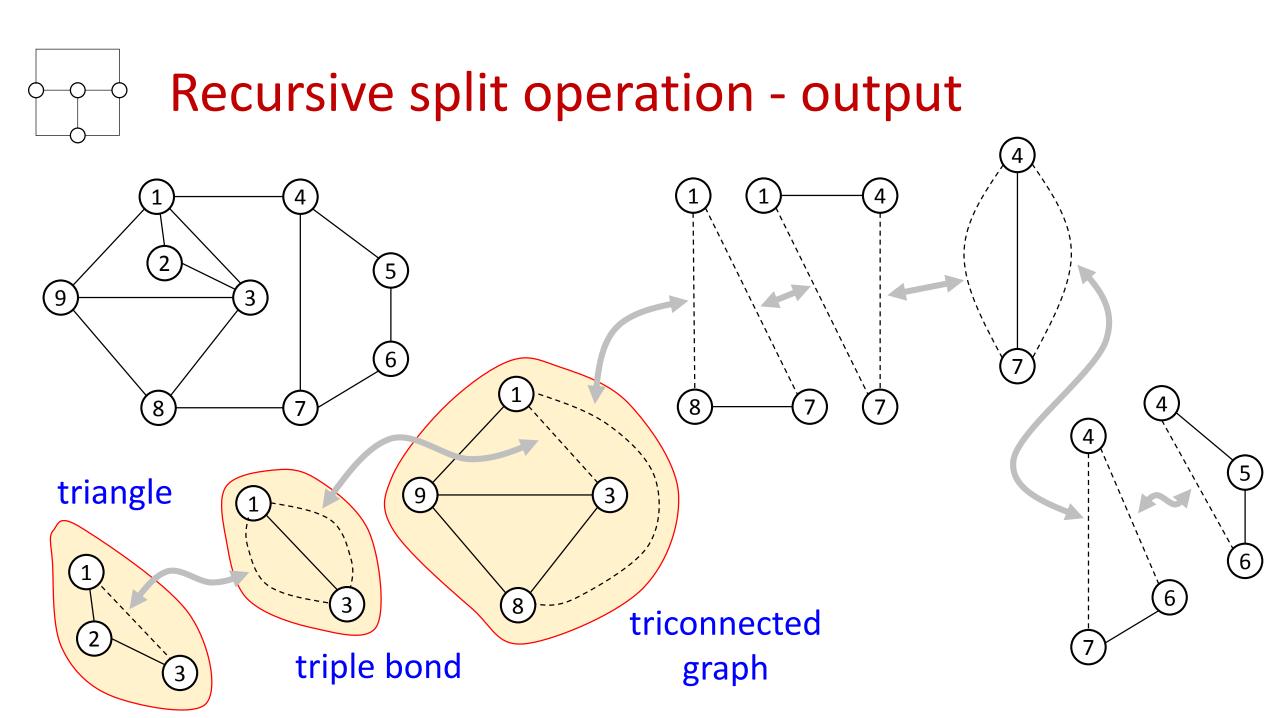




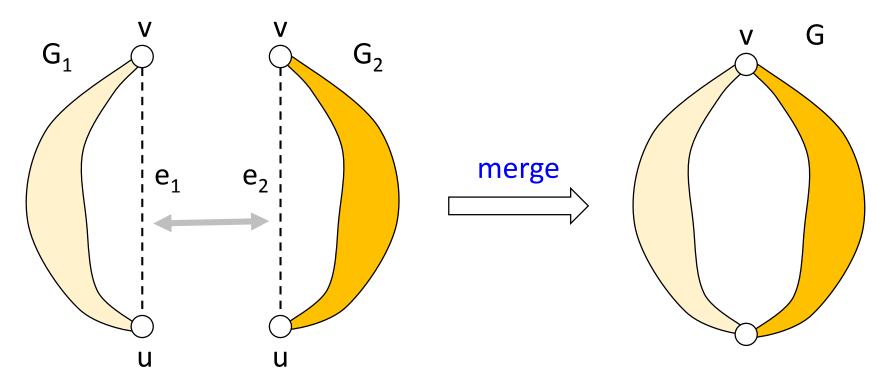
(5)

(6)

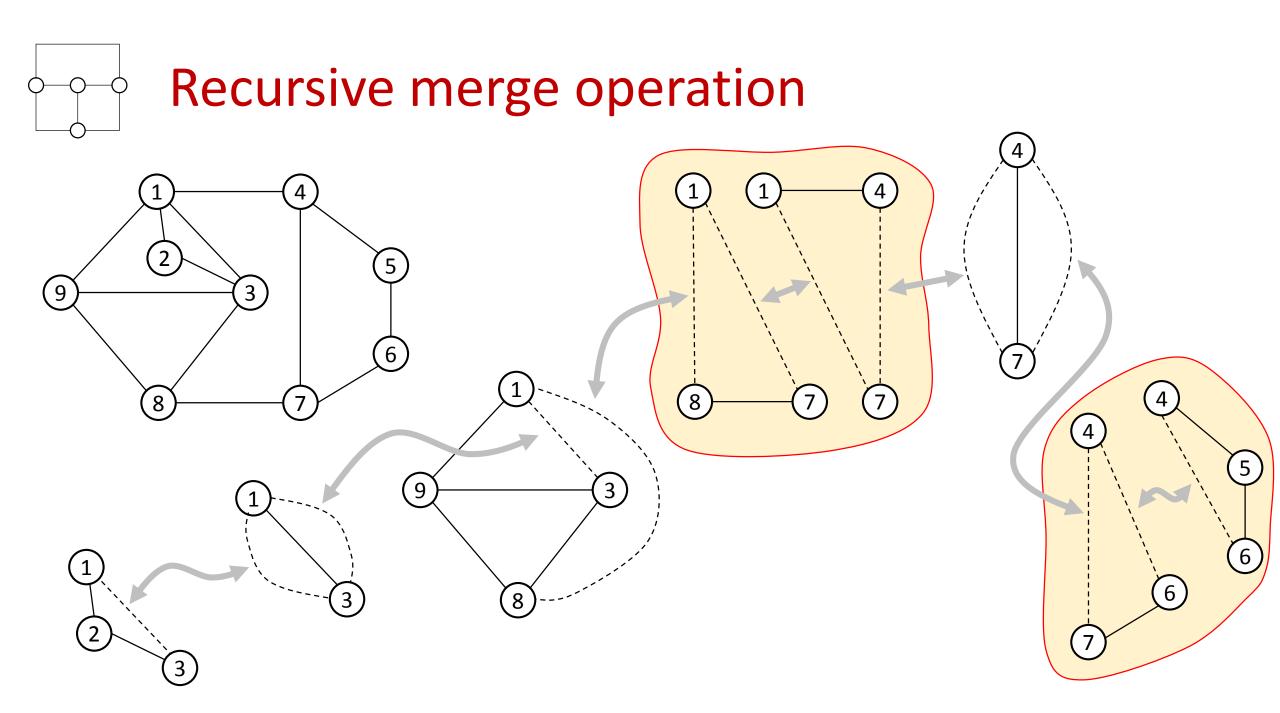


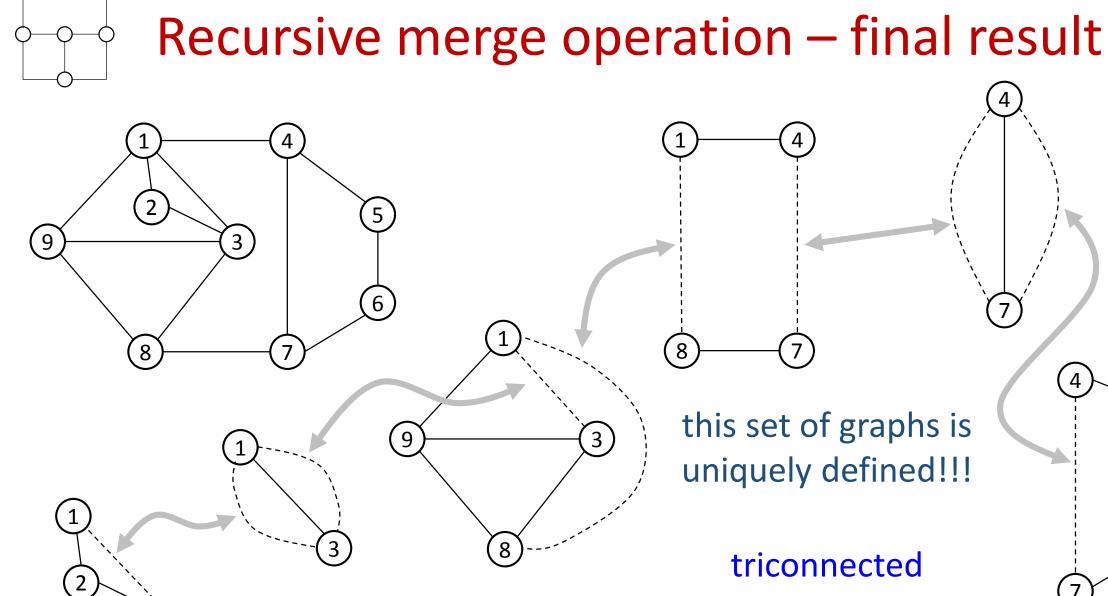






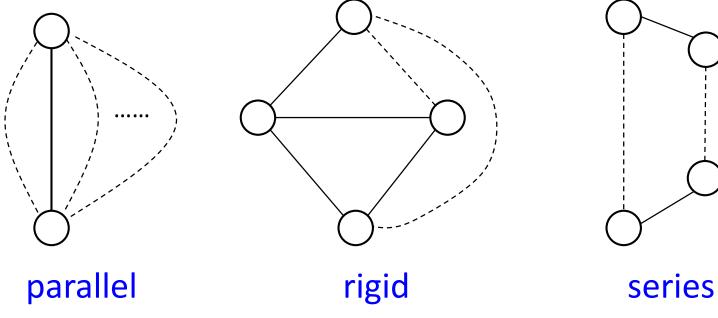
- If each G<sub>i</sub> is a triple bond or (more in general) consists of a set of parallel edges only
- If each G<sub>i</sub> is a triangle or (more in general) a simple cycle





components

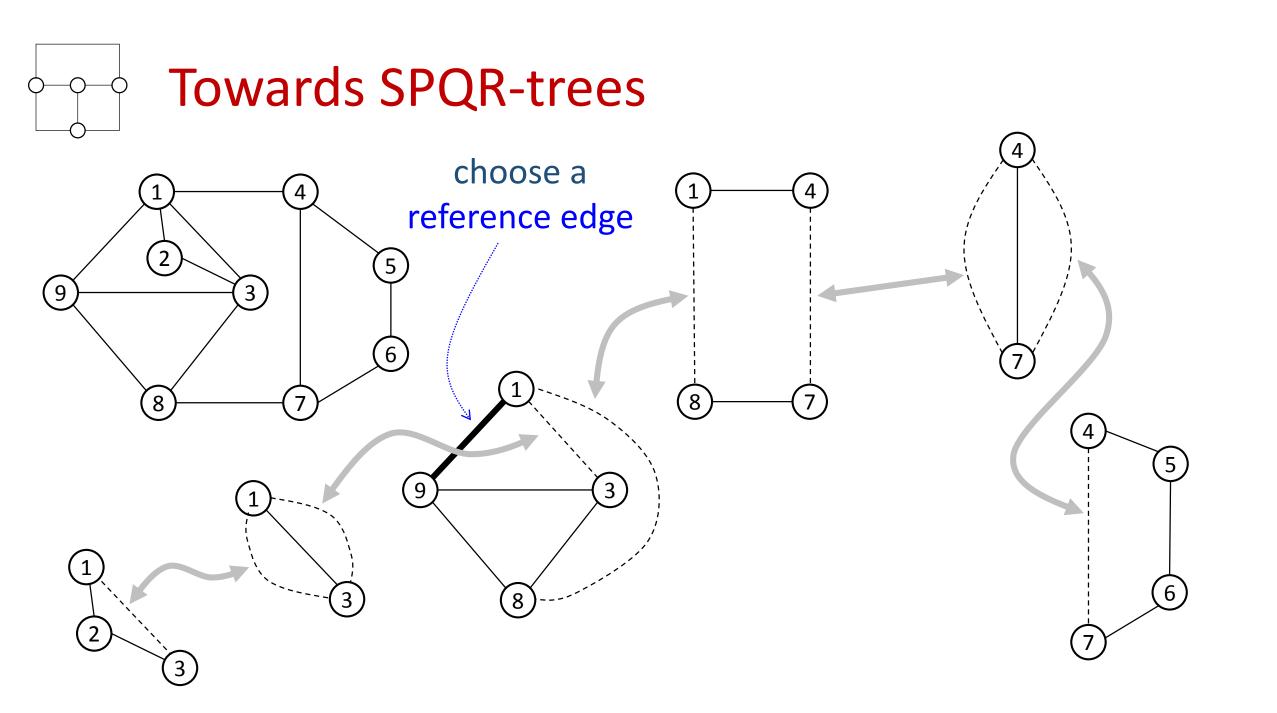


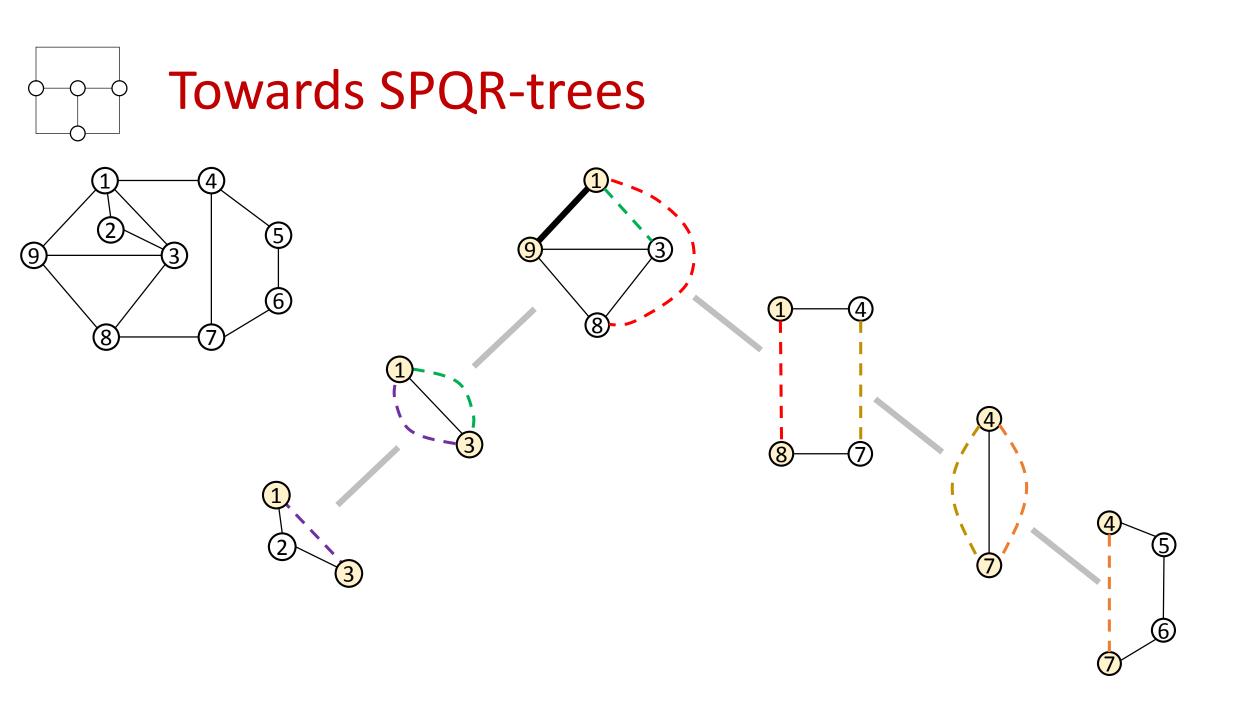


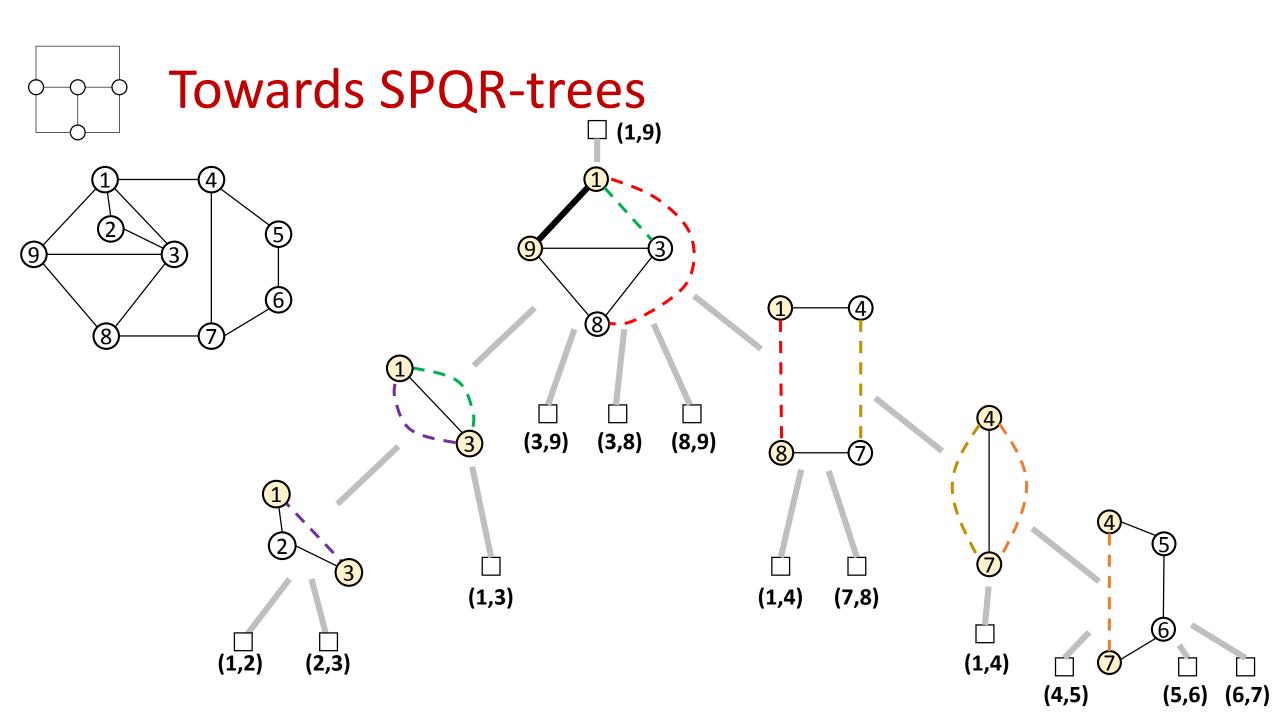
component

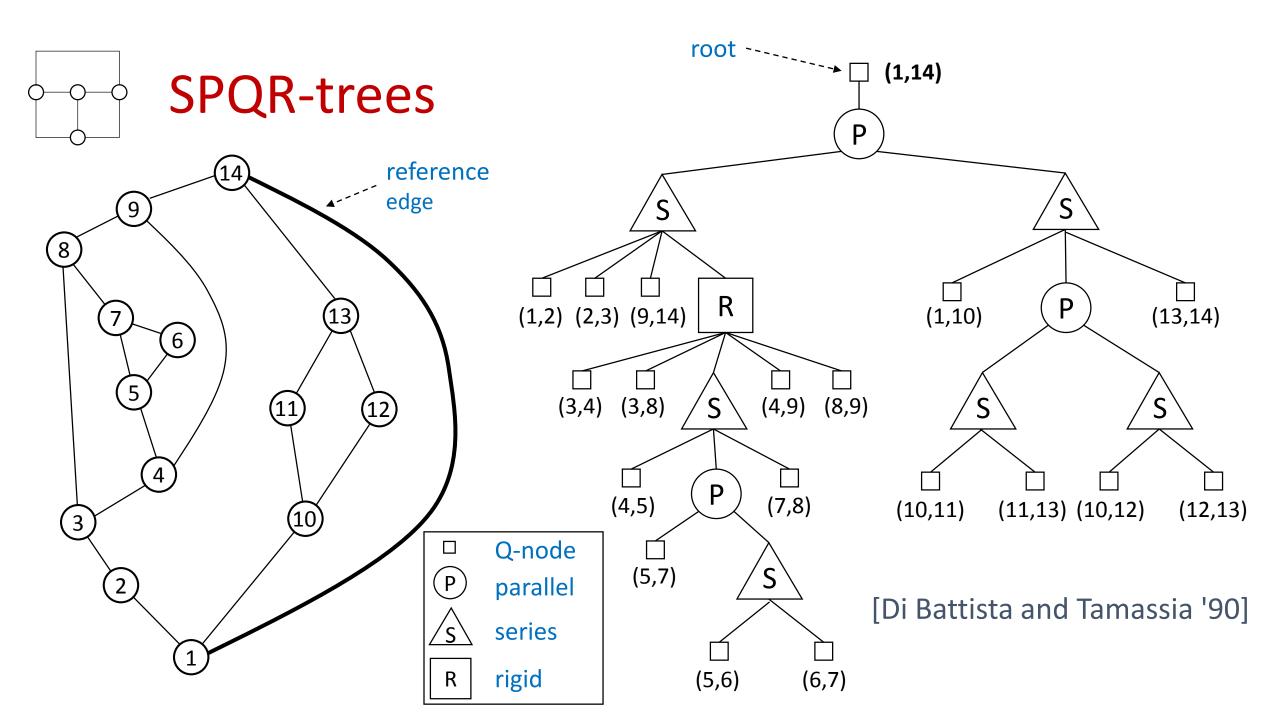
component

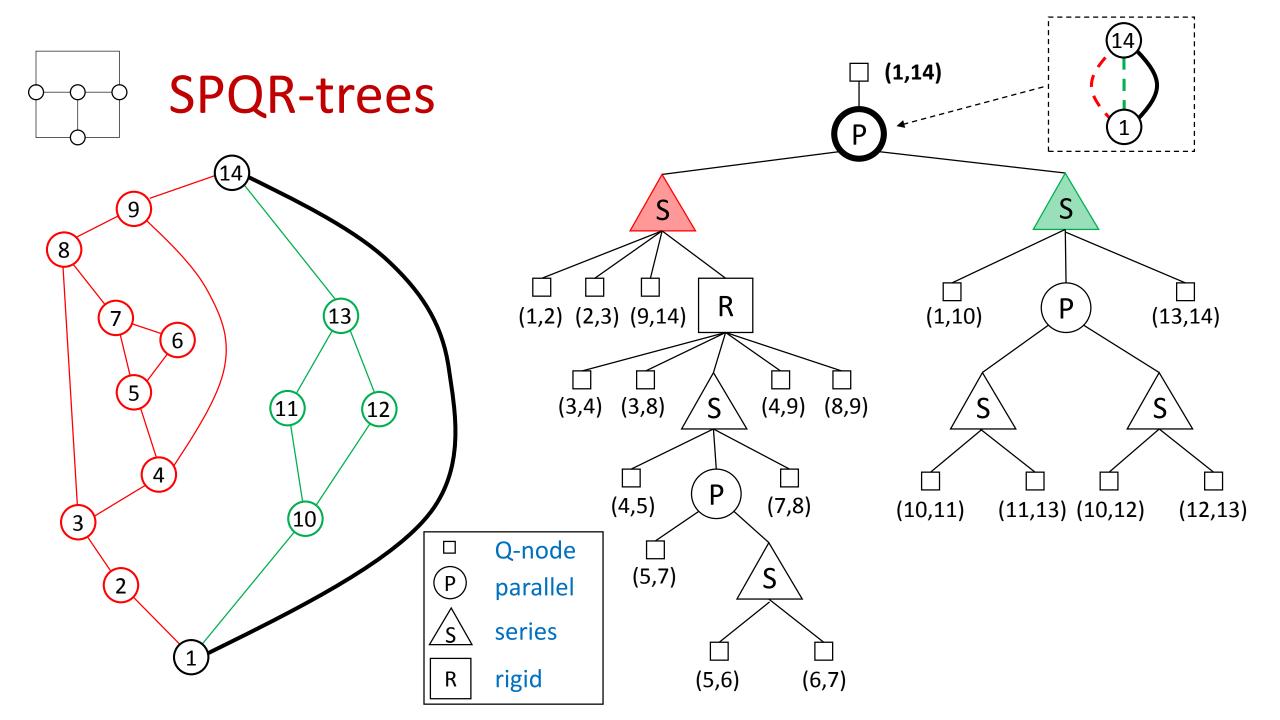
component

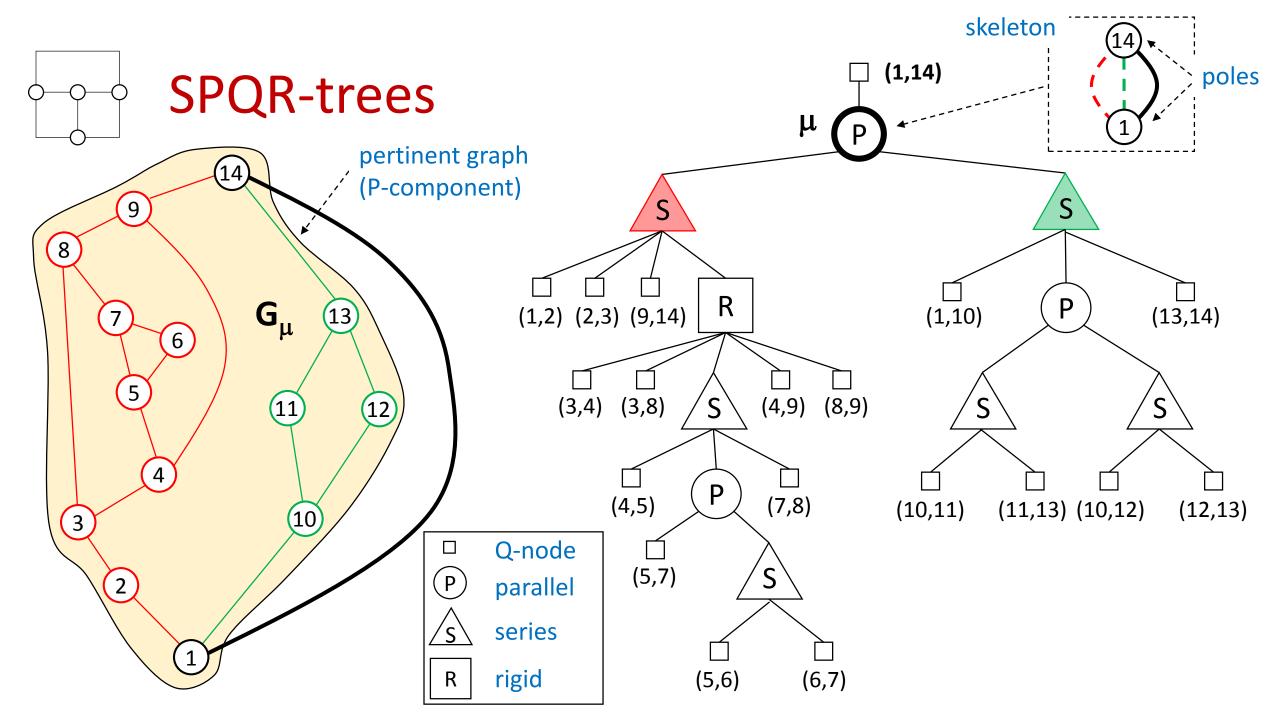


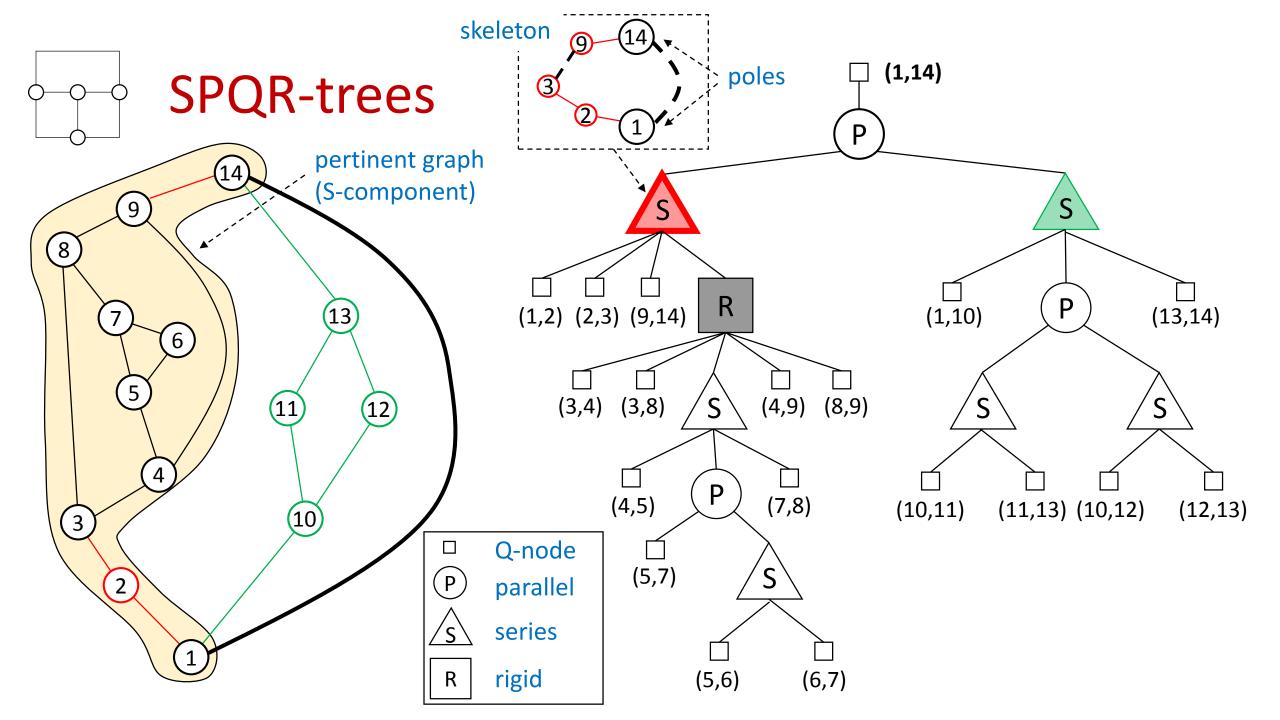


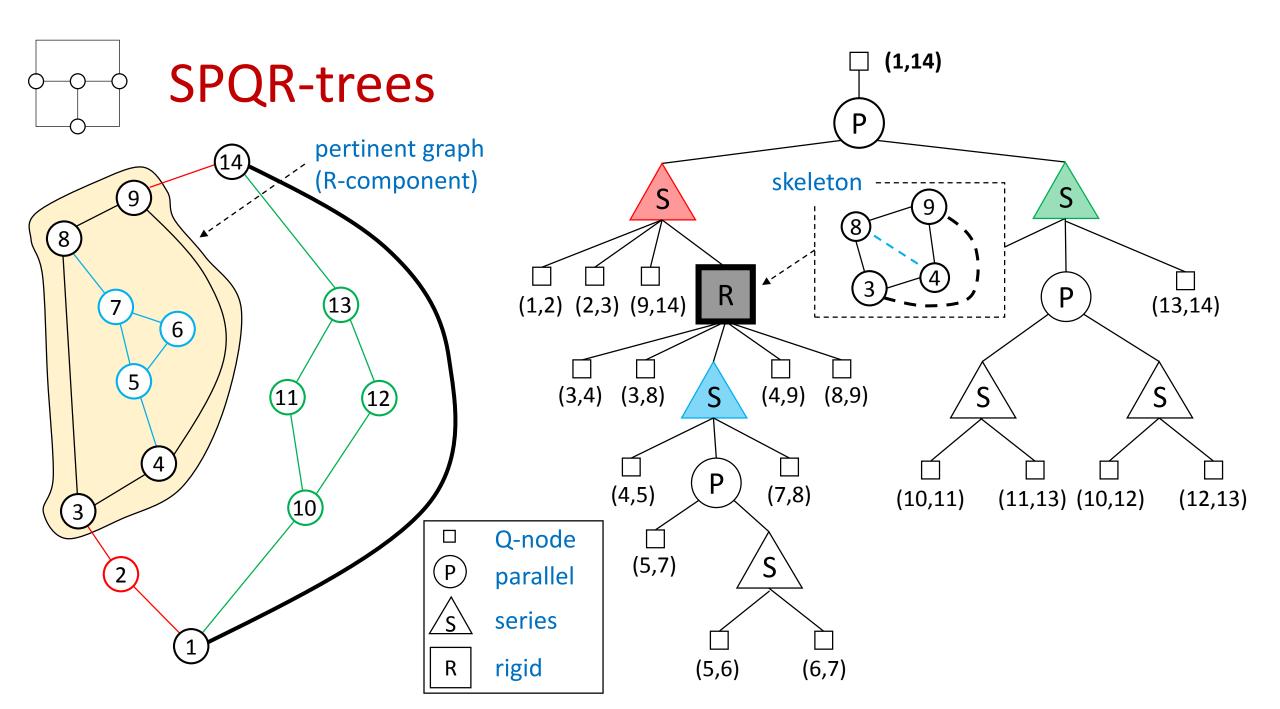


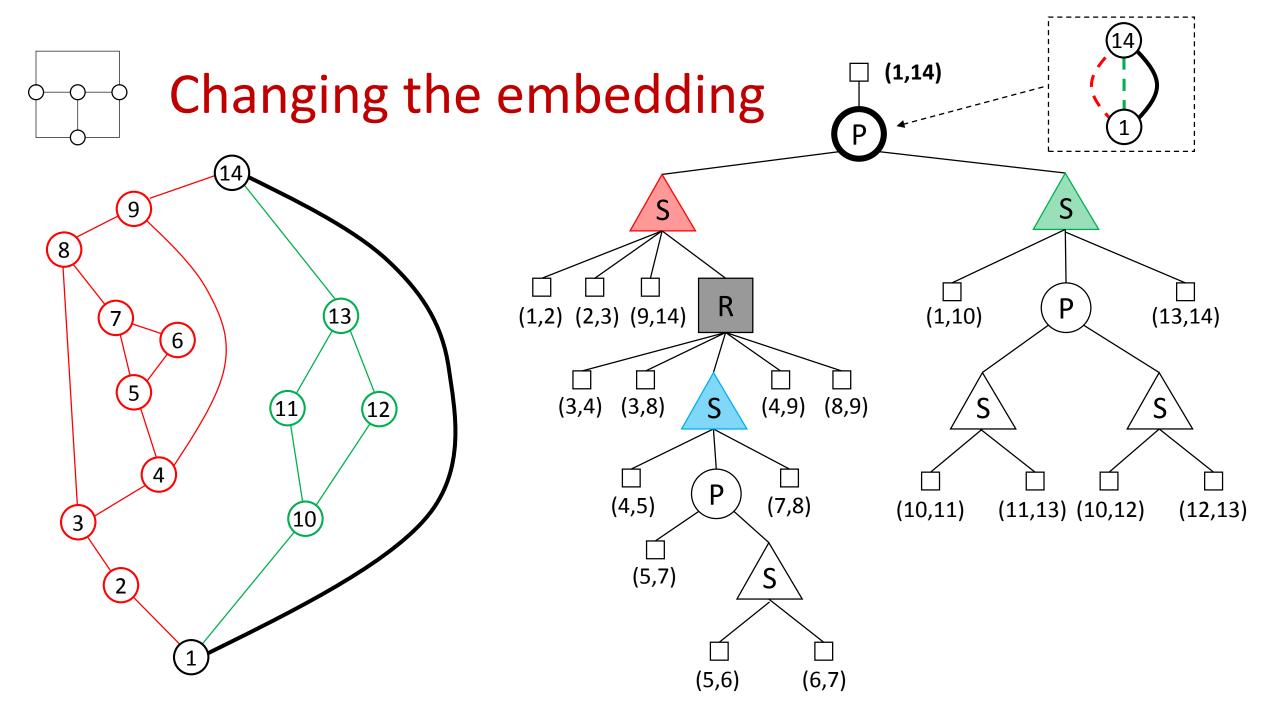


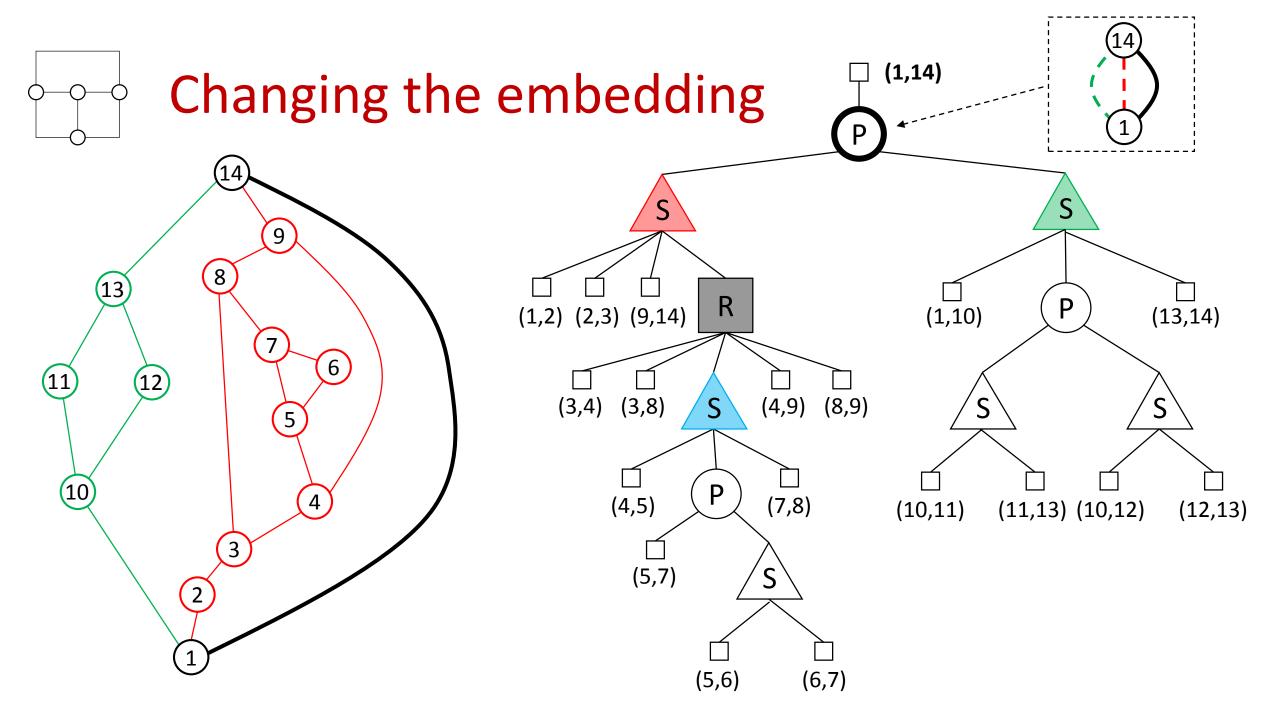


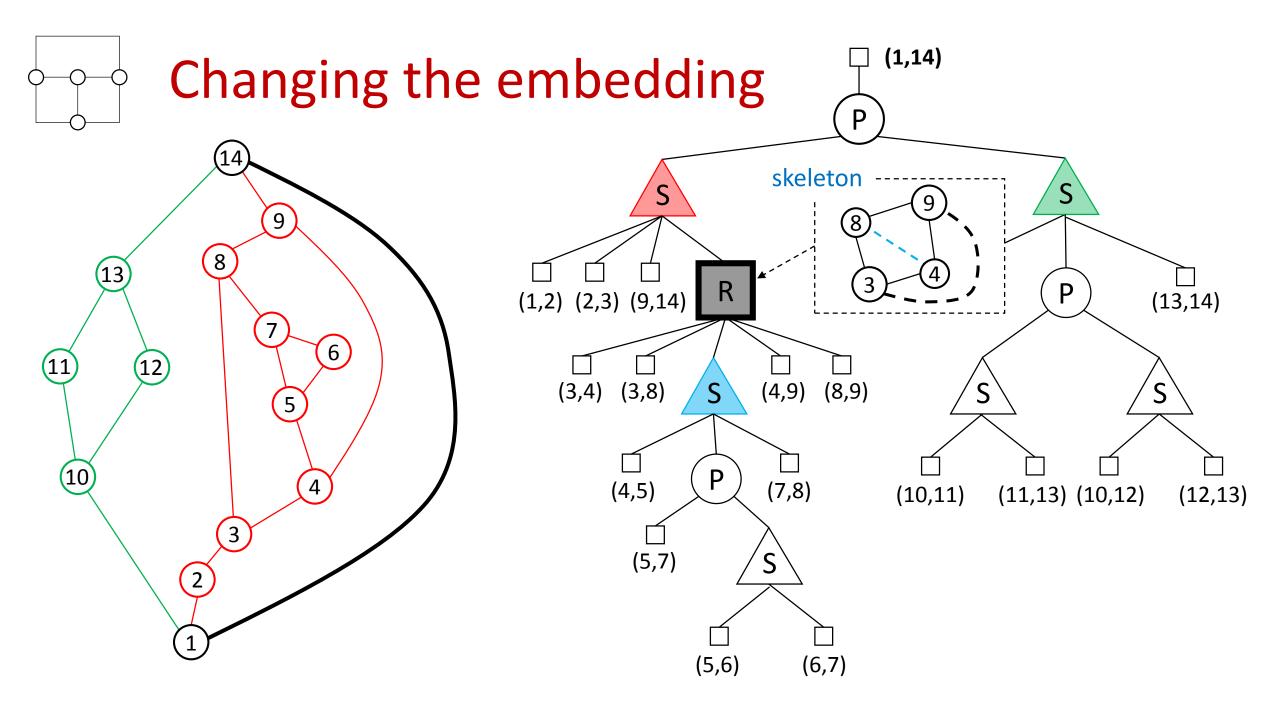


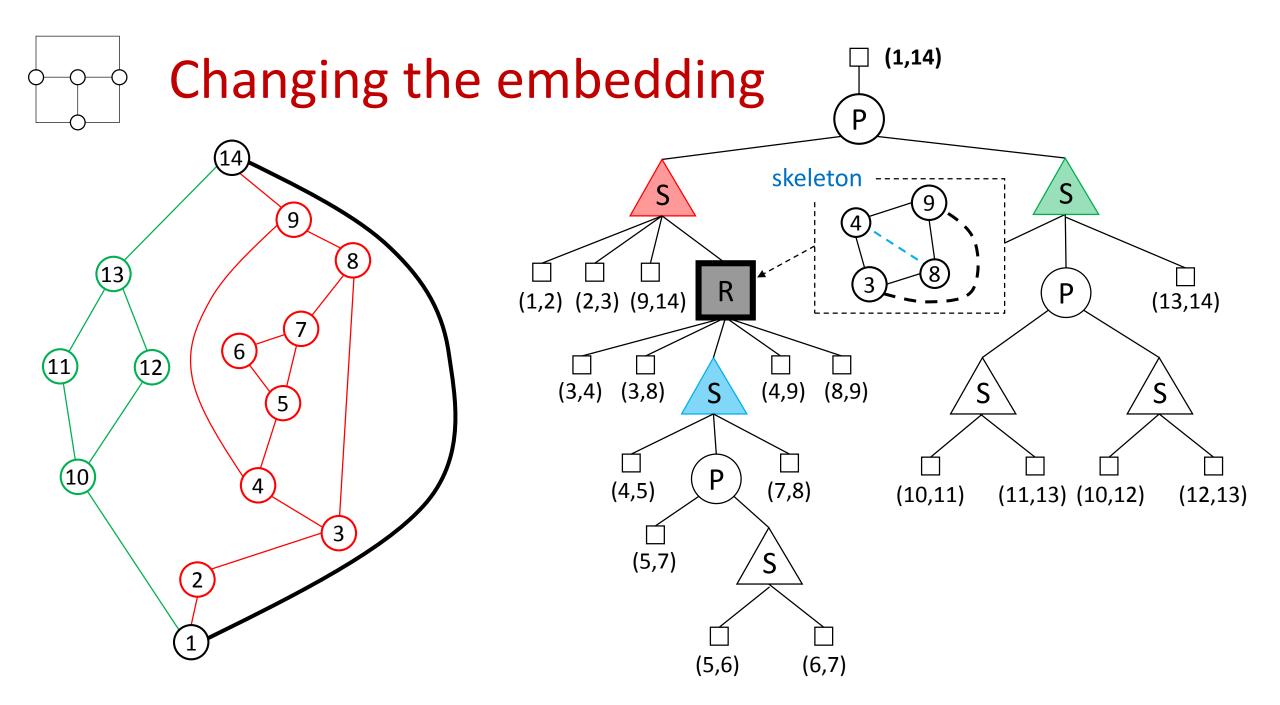


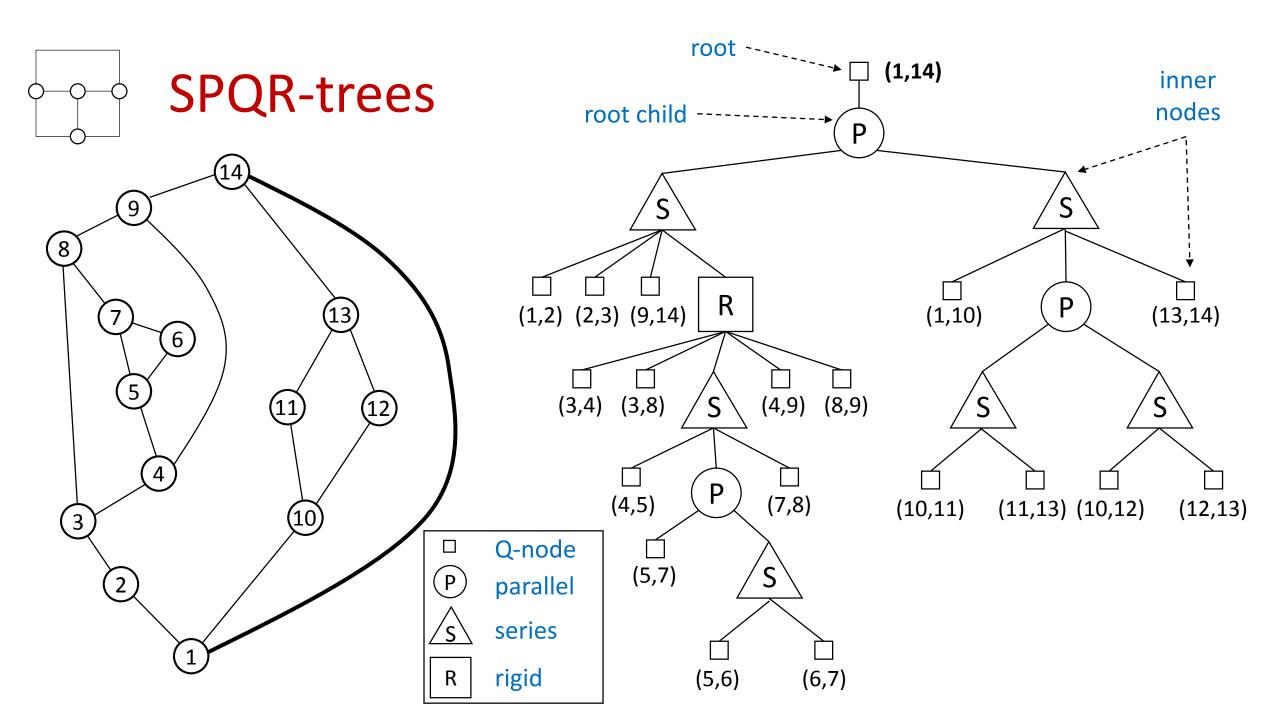


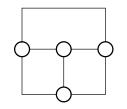








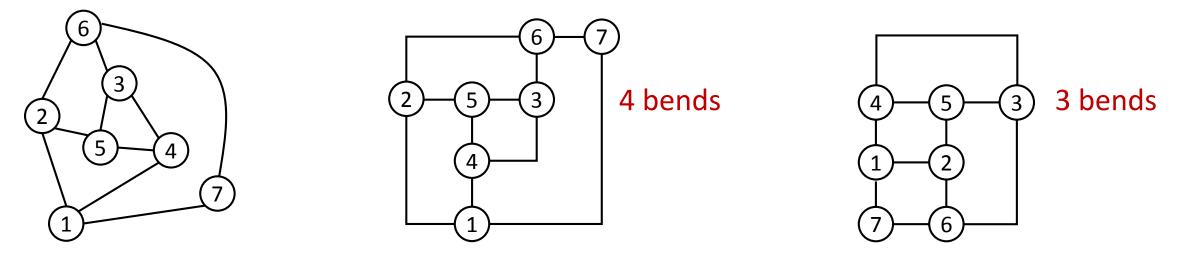




## Bend-minimum orthogonal drawings of planar 3-graphs



#### **Problem**: planar **3-graph** $\implies$ planar **bend-minimum** orthogonal drawing



plane 3-graph

bend-min orthogonal drawing (fixed embedding) bend-min orthogonal drawing (variable embedding)



### Bend-min orthogonal drawings: fixed embedding

• plane 4-graphs  $-O(n^2 \log n)$  [Tamassia (1987)]  $-O(n^{7/4} \sqrt{\log n})$  [Garg, Tamassia (2001)]  $-O(n^{1.5})$  [Cornelsen, Karrenbauer (2011)]

based on min-cost flow

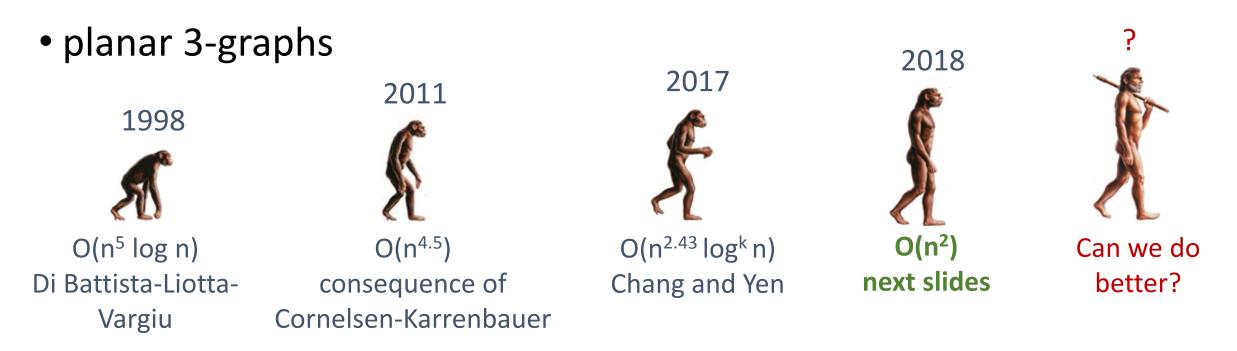
plane 3-graphs
 O(n) [Rahman, Nishizeki (2002)]

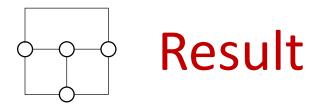
not based on flow techniques



### Bend-min orthogonal drawings: variable embedding

• planar 4-graphs: NP-hard [Garg, Tamassia (2001)]





**Theorem**. Let G be an n-vertex (simple) planar 3-graph. There exists an  $O(n^2)$ -time algorithm that computes a bend-minimum orthogonal drawing of G, with at most two bends per edge.

**P. S.** the algorithm takes O(n) time if we require that a prescribed edge of G is on the external face

*W. Didimo, G. Liotta, M. Patrignani*: Bend-Minimum Orthogonal Drawings in Quadratic Time. Graph Drawing 2018: 481-494



**input**: G biconnected planar 3-graph with n vertices **output**: bend-min orthogonal drawing  $\Gamma$  of G

- for each edge *e* of G
  - $\Gamma_{e} \leftarrow \text{bend-min orthogonal drawing of G with } e$  on the external face
- return  $\Gamma \leftarrow \min$ -bends  $\{\Gamma_e\}$

```
\Gamma_e is computed in O(n) time
```

## Strategy for the linear-time algorithm

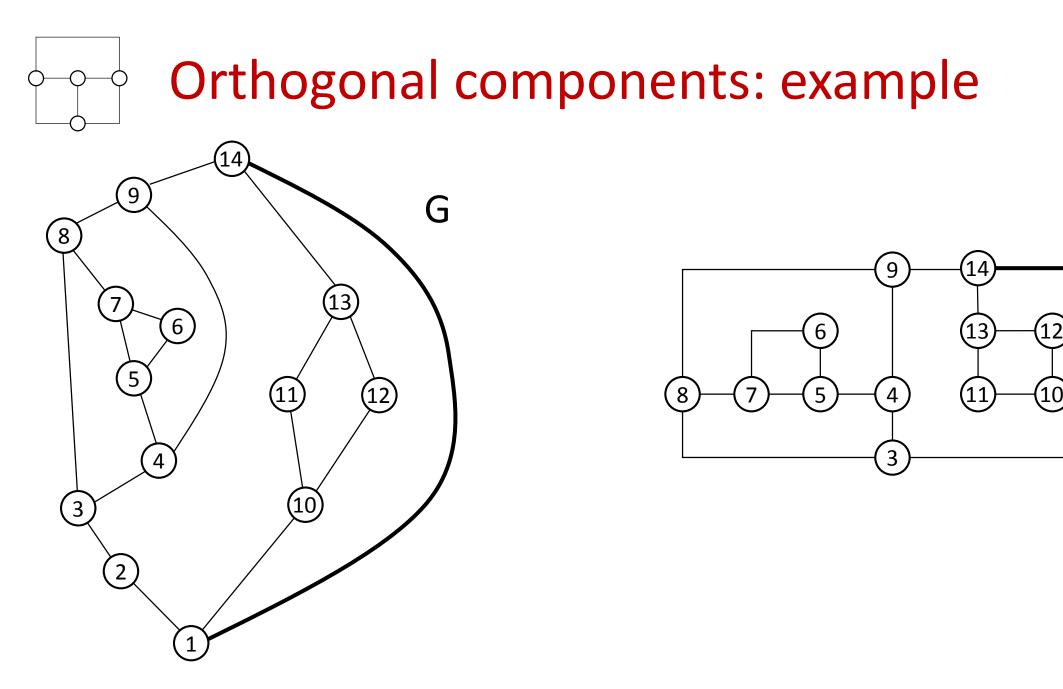
- Incremental construction of  $\Gamma_e$ 
  - 1. bottom-up visit of the SPQR-tree + *orthogonal spirality* 
    - similar to [*G. Di Battista, G. Liotta, F. Vargiu*: Spirality and optimal orthogonal drawings, SIAM J. Comput., 27 (1998)]
  - 2. new properties of bend-min orthogonal drawings of planar 3-graphs
  - 3. non-flow based computation of bend-min orthogonal drawings for the rigid components

# Orthogonal representations: reminder

orthogonal representation = equivalence class of orthogonal drawings with the same vertex angles and the same sequence of bends along the edges

 a drawing of an orthogonal representation can be computed in linear time

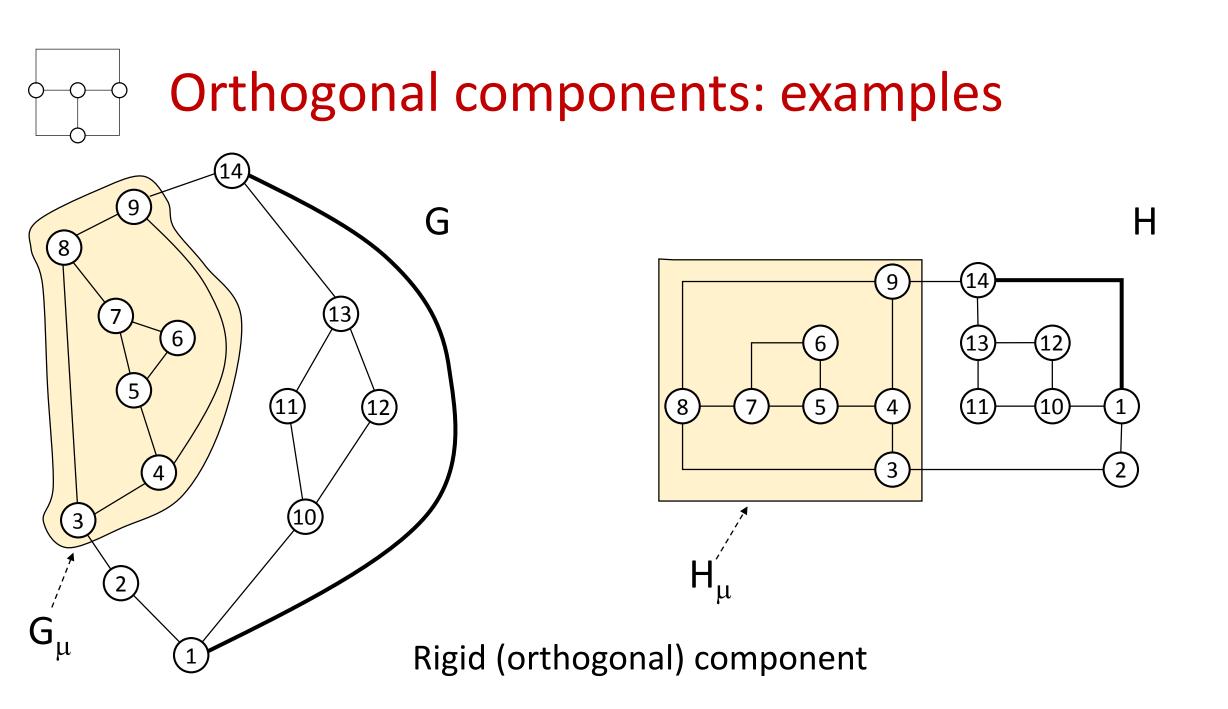
orthogonal component = orthogonal representation  $H_{\mu}$  of a component  $G_{\mu}$ 

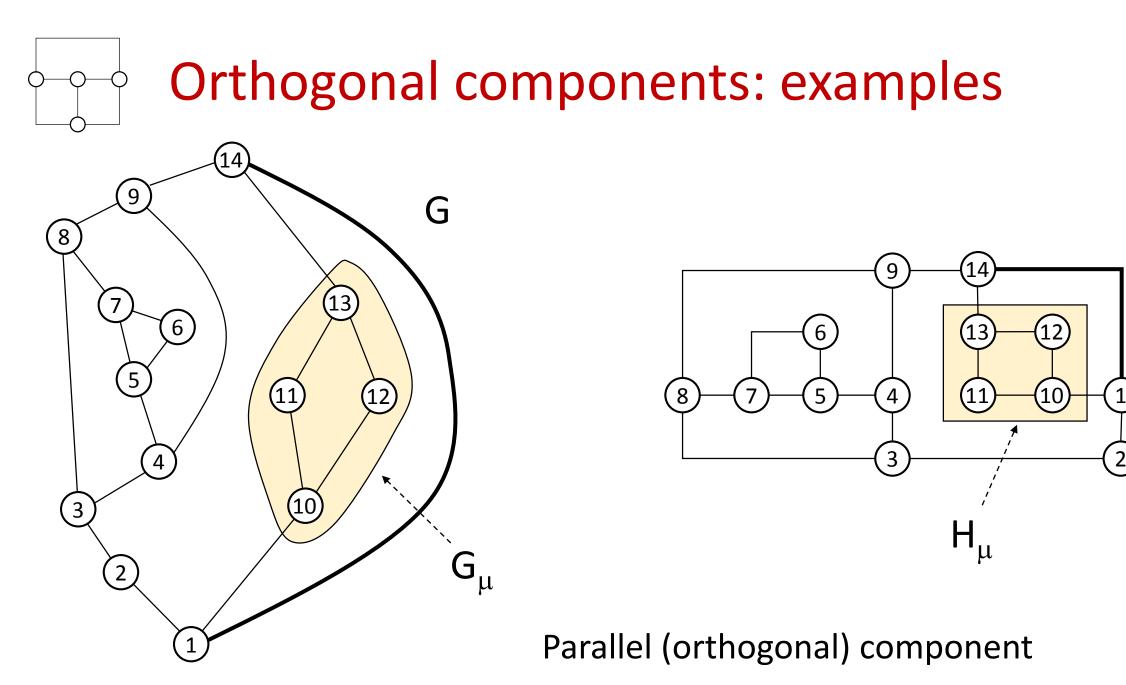


Η

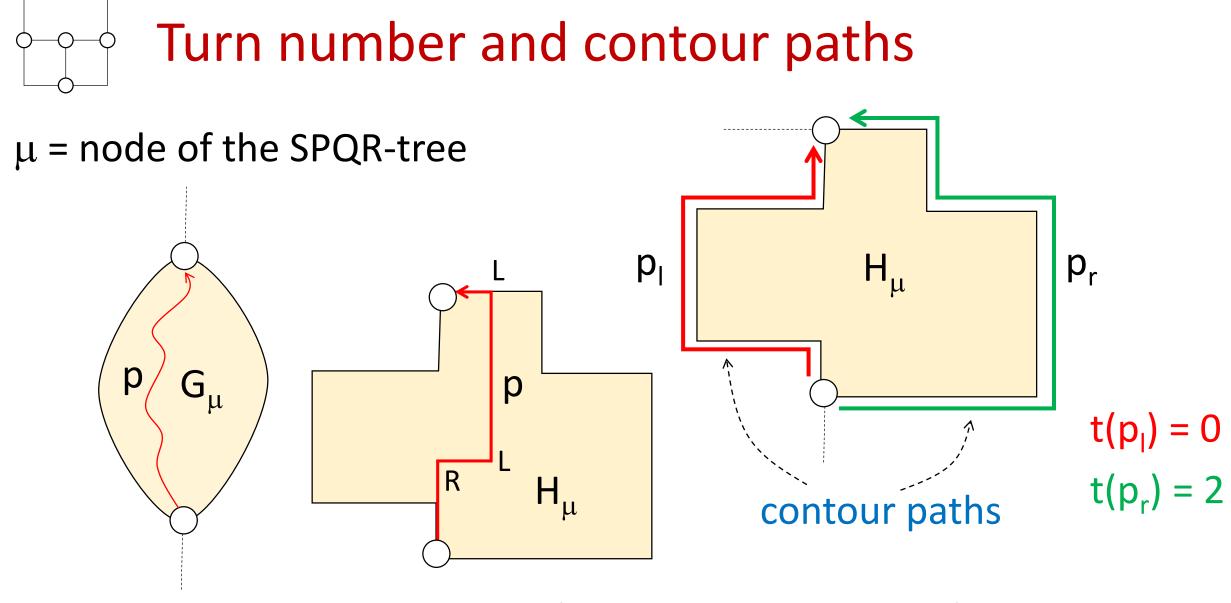
1





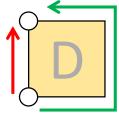


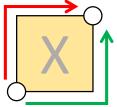
Η

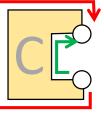


t(p) = turn number = |#left turns – # right turns| (along p)

P- and R-components: Representative shapes  $\mu$  = P-node or R-node  $H_{\mu}$  is D-shaped  $\Leftrightarrow$  t(p<sub>1</sub>) = 0 and t(p<sub>r</sub>) = 2 or vice versa  $H_{ii}$  is X-shaped  $\Leftrightarrow t(p_i) = t(p_r) = 1$  $H_{II}$  is C-shaped  $\Leftrightarrow$  t(p<sub>I</sub>) = 4 and t(p<sub>r</sub>) = 2 or vice versa H<sub>II</sub> is L-shaped  $\Leftrightarrow$  t(p<sub>I</sub>) = 3 and t(p<sub>r</sub>) = 1 or vice versa



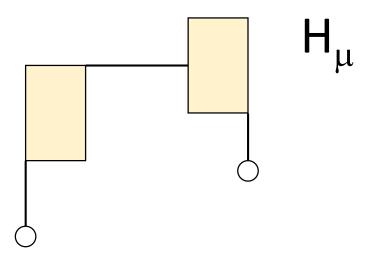






 $\mu$  = inner S-node

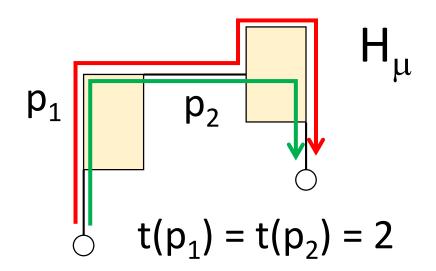
**Lemma**. All paths between the poles of an orthogonal component  $H_{\mu}$  have the same turn number





 $\mu$  = inner S-node

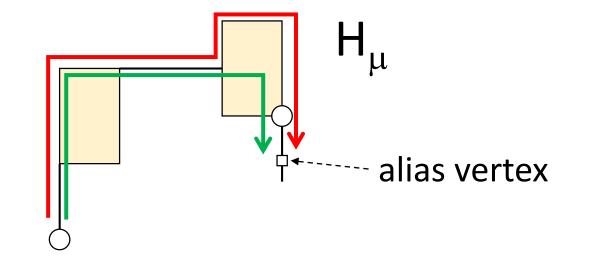
**Lemma**. All paths between the poles of an orthogonal component  $H_{\mu}$  have the same turn number





 $\mu$  = root child S-node

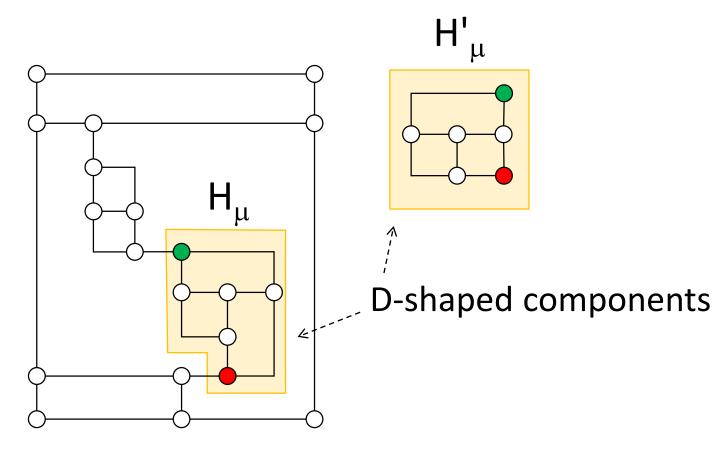
The definition of k-spiral and the lemma are extended by considering an external alias vertex in place of a pole with in-degree 2



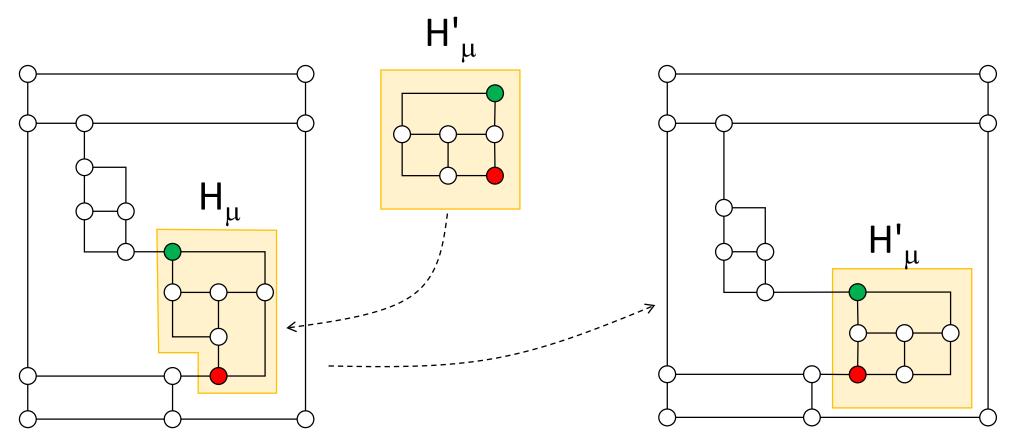
## Equivalent orthogonal components

- $H_{\mu}$  and  $H'_{\mu}$  = two distinct orthogonal representations of  $G_{\mu}$
- $H_{\mu}$  and  $H'_{\mu}$  are equivalent if:  $-\mu$  is a P- or an R-node and  $H_{\mu}$ ,  $H'_{\mu}$  have the same representative shape  $-\mu$  is an S-node and  $H_{\mu}$ ,  $H'_{\mu}$  have the same spirality

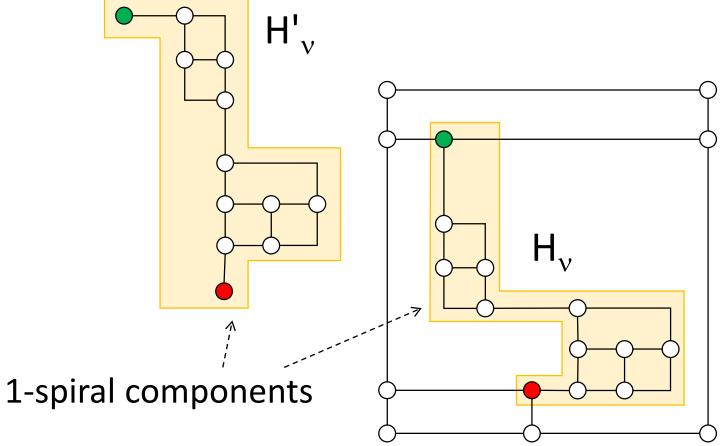




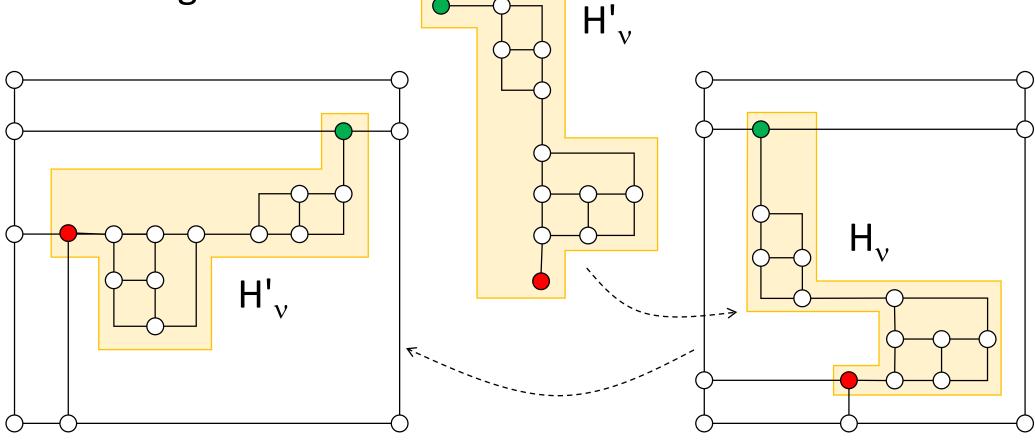














**Key-Lemma**. Every biconnected planar 3-graph with a given edge *e* admits a bend-min orthogonal representation with *e* on the external face such that:

- **O1.** every edge has at most two bends
- **O2.** every inner P- or R-component is D- or X-shaped; if the root child is a P- or an R-component, it is either D-, C-, or L-shaped
- **O3.** every S-component has spirality at most 4



**Key-Lemma**. Every biconnected planar 3-graph with a given edge *e* admits a bend-min orthogonal representation with *e* on the external face such that:

- **O1.** every edge has at most two bends
- **O2.** every inner P- or R-component is D- or X-shaped; if the root child is a P- or an R-component, it is either D-, C-, or L-shaped
- **O3.** every S-component has spirality at most 4

**Proof ingredients:** partially based on a characterization of no-bend orthogonal representations [Rahman, Nishizeki, Naznin 2003]



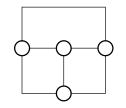
**Key-Lemma**. Every biconnected planar 3-graph with a given edge *e* admits a bend-min orthogonal representation with *e* on the external face such that:

**O1.** every edge has at most two bends

**O2.** every inner P- or R-component is D- or X-shaped; if the root child is a P- or an R-component, it is either D-, C-, or L-shaped

**O3.** every S-component has spirality at most 4

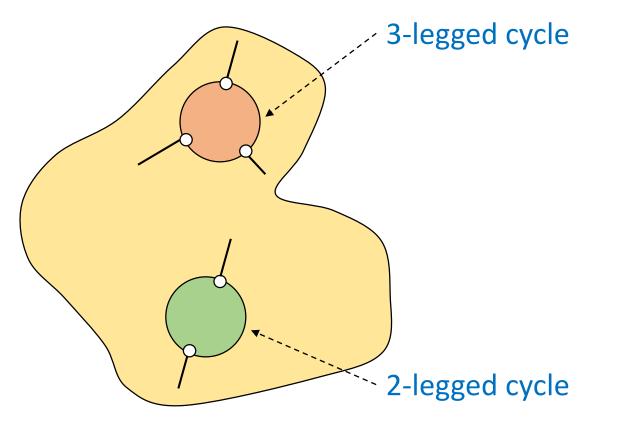
**Consequence:** we can restrict our algorithm to search for a bend-min representation that satisfies O1, O2, and O3.

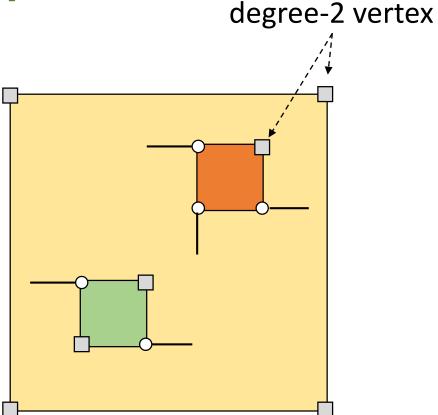


## \begin{Characterization of no-bend drawings}



[Rahman, Nishizeki, Naznin, JGAA 2003] = [RNN'03]





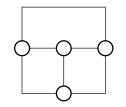
no-bend orthogonal drawing of G

biconnected plane 3-graph

# Characterization of no-bend drawings

Theorem [RNN'03]. Let G be a biconnected plane
3-graph. G admits a no-bend orthogonal drawing ⇔
(i) the external cycle of G has <u>at least</u> 4 degree-2 vertices
(ii) each k-legged cycle of G has <u>at least</u> (4-k) degree-2 vertices

**Definition:** we call **bad** a 2-legged or a 3-legged cycle that does not satisfy (ii)



## \end{Characterization of no-bend drawings}



**Key-Lemma**. Let G be a biconnected planar 3-graph with a given edge *e*; G admits a bend-min orthogonal representation with *e* on the external face and having these properties:

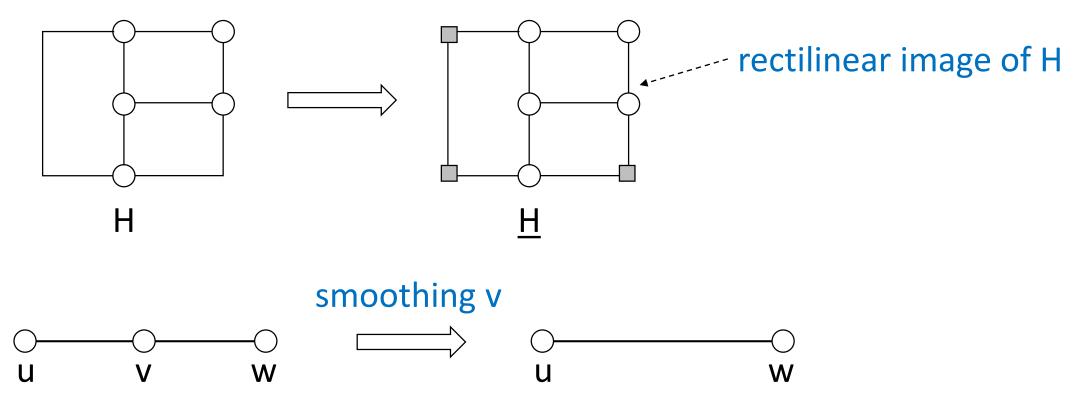
#### **O1.** at most two bends per edge

**O2.** every inner P- or R-component is D- or X-shaped; if the root child is a P- or an R-component, it is either D-, C-, or L-shaped

**O3.** every S-component has spirality at most 4



Notation



Key-Lemma: O1

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends

Key-Lemma: O1

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of <u>H</u> corresponding to the bends of g

Key-Lemma: O1

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of <u>H</u> corresponding to the bends of g
- <u>H</u> has no-bend  $\Rightarrow$  <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]

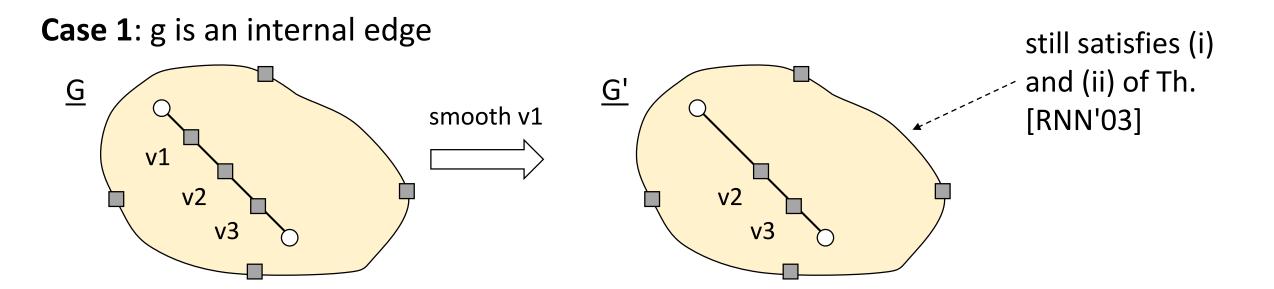
Key-Lemma: 01

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of <u>H</u> corresponding to the bends of g
- <u>H</u> has no-bend  $\Rightarrow$  <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]

Case 1: g is an internal edge

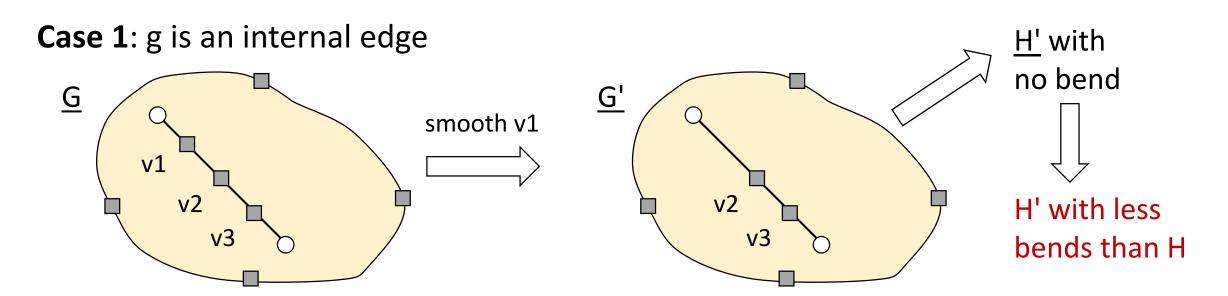
Key-Lemma: O1

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of <u>H</u> corresponding to the bends of g
- <u>H</u> has no-bend  $\Rightarrow$  <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]



Key-Lemma: O1

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of <u>H</u> corresponding to the bends of g
- <u>H</u> has no-bend  $\Rightarrow$  <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]

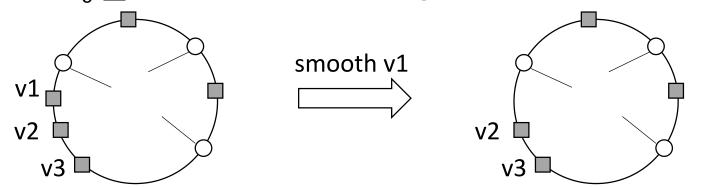


Key-Lemma: O1

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of <u>H</u> corresponding to the bends of g
- <u>H</u> has no-bend  $\Rightarrow$  <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]

**Case 2**: g is an external edge (call C<sub>0</sub>(G) the external boundary of G)

• **Case 2.1.**  $C_0(\underline{G})$  has more than 4 degree-2 vertices



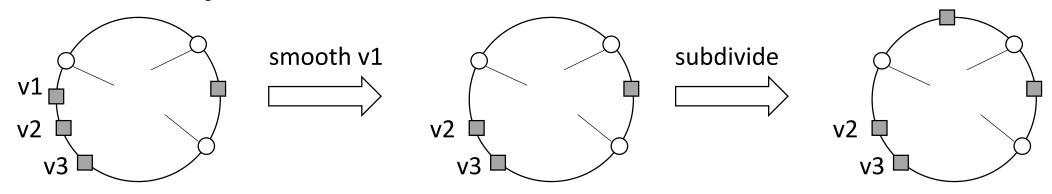
contradiction as before

Key-Lemma: O1

- H = bend-min representation of G with *e* on the external face
- g = edge of H with (at least) three bends
- v1, v2, v3 = the three bend-vertices of <u>H</u> corresponding to the bends of g
- <u>H</u> has no-bend  $\Rightarrow$  <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]

**Case 2**: g is an external edge (call  $C_0(G)$  the external boundary of G)

• **Case 2.2.** C<sub>0</sub>(<u>G</u>) has exactly 4 degree-2 vertices





**Key-Lemma**. Let G be a biconnected planar 3-graph with a given edge *e*; G admits a bend-min orthogonal representation with *e* on the external face and having these properties:

**O1.** at most two bends per edge

O2. every inner P- or R-component is D- or X-shaped; if the root child is a P- or an R-component, it is either D-, C-, or L-shaped

**O3.** every S-component has spirality at most 4

Key-Lemma: O2

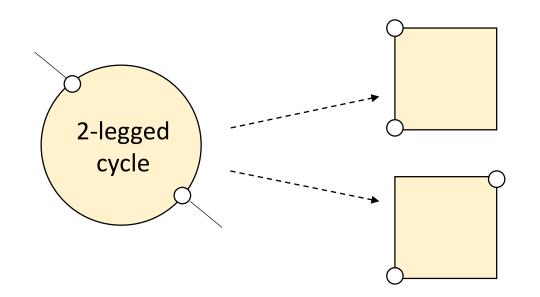
#### Proof of O2 (inner P- or R-components are D- or X-shaped)

- H = bend-min representation of G with *e* on the external face and property O1
- <u>H</u> has no-bend  $\Rightarrow$  <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]

Key-Lemma: O2

#### Proof of O2 (inner P- or R-components are D- or X-shaped)

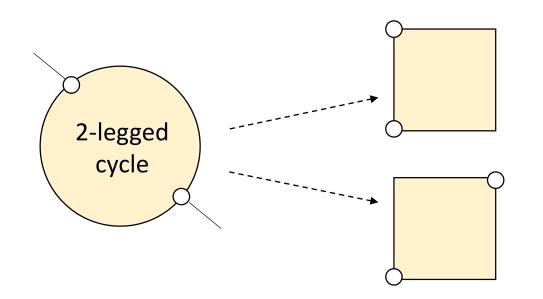
- H = bend-min representation of G with *e* on the external face and property O1
- <u>H</u> has no-bend  $\Rightarrow$  <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]
- [RNN'03] gives an algorithm that computes a no-bend representation <u>H</u>' of <u>G</u> such that every 2-legged (and 3-legged) cycle is either D-shaped or X-shaped



Key-Lemma: O2

#### Proof of O2 (inner P- or R-components are D- or X-shaped)

- H = bend-min representation of G with *e* on the external face and property O1
- <u>H</u> has no-bend  $\Rightarrow$  <u>G</u> satisfies (i) and (ii) of Th. [RNN'03]
- [RNN'03] gives an algorithm that computes a no-bend representation <u>H</u>' of <u>G</u> such that every 2-legged (and 3-legged) cycle is either D-shaped or X-shaped

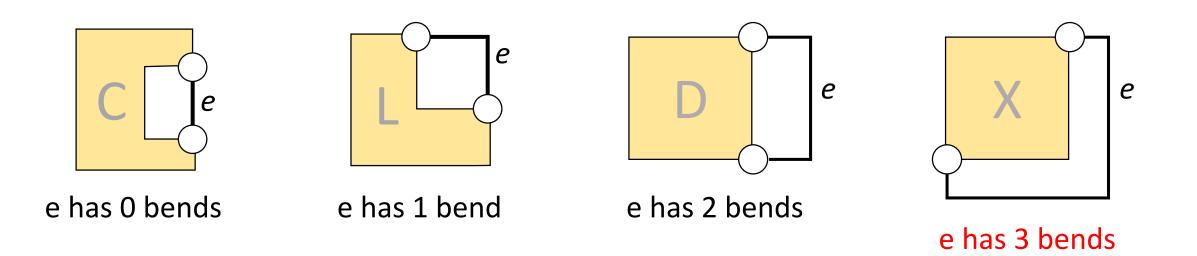


... each inner P- and R-component is a 2-legged cycle in <u>G</u>



#### Proof of O2 (root child P- or R-components are D-, C-, or L-shaped)

• H = bend-min representation of G with *e* on the external face and property O1





**Key-Lemma**. Let G be a biconnected planar 3-graph with a given edge *e*; G admits a bend-min orthogonal representation with *e* on the external face and having these properties:

**O1.** at most two bends per edge

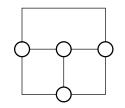
**O2.** every inner P- or R-component is D- or X-shaped; if the root child is a P- or an R-component, it is either D-, C-, or L-shaped

**O3.** every S-component has spirality at most 4

Key-Lemma: O3

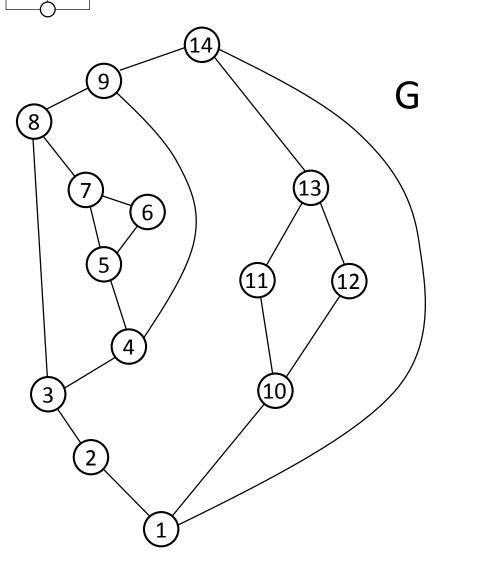
### **Proof of O3 (S-components have spirality at most 4)**

- H = bend-min representation of G with *e* on the external face and properties O1 and O2;
- <u>H</u> was computed with the [RNN'03] alg, which we call NoBend-Alg
- we prove that every S-component in <u>H</u> (and thus in H) has spirality at most 4



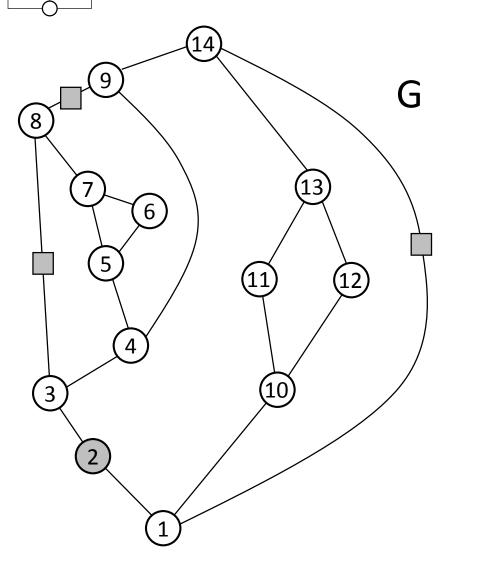
# \begin{NoBend-Alg}

# Step 1: choose 4 external corners



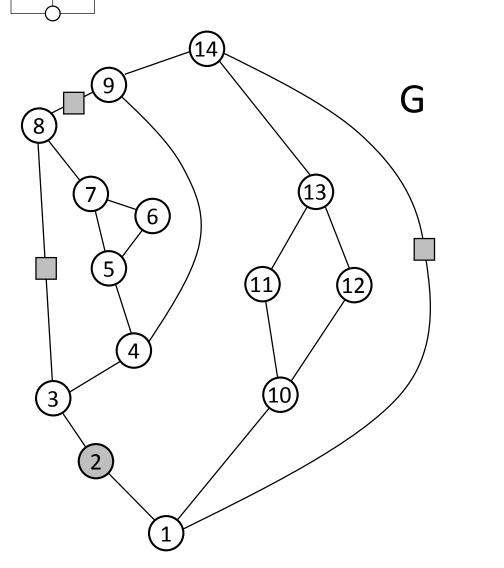
four vertices of degree 2 are used as corners (in our case, these vertices may be obtained by subdividing edges)

# Step 1: choose 4 external corners



four vertices of degree 2 are used as corners (in our case, these vertices may be obtained by subdividing edges)

### Step 2: find maximal bad cycles w.r.t. the corners



- 2-legged cycles not passing through (at least) 2 corners
- 3-legged cycles not passing through (at least) 1 corner

### Step 2: find maximal bad cycles w.r.t. the corners

G

13

12

(11

8

3

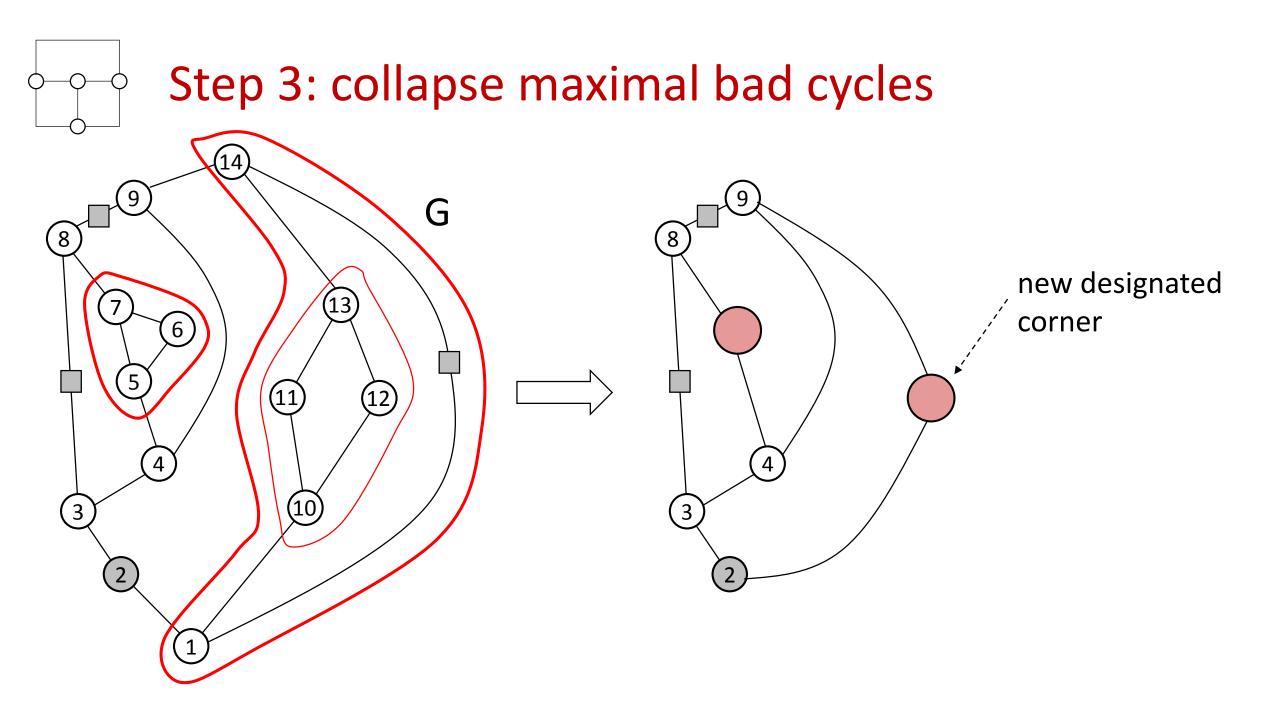
2

6

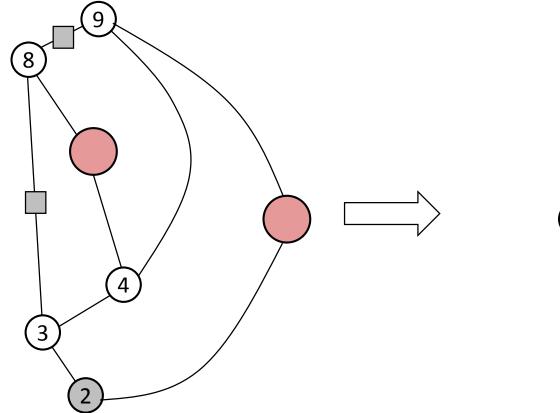
2-legged cycles not passing through (at least) 2 corners
3-legged cycles not passing through (at least) 1 corner

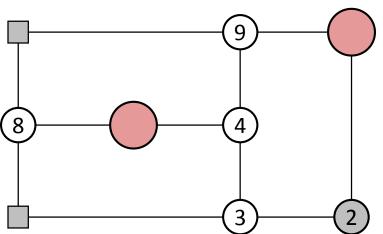
bad 2-legged,
 but not maximal

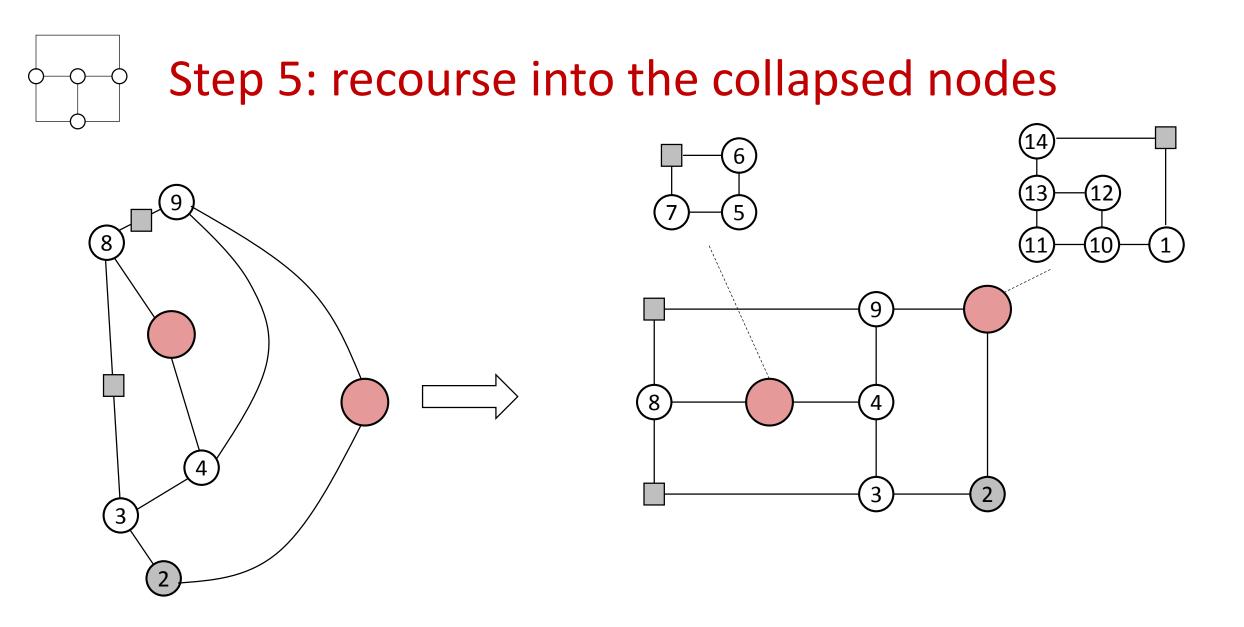
bad 2-legged maximal







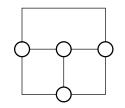




#### Step 6: ... and plug the components (14) (13 (10)(14

(12)

(10

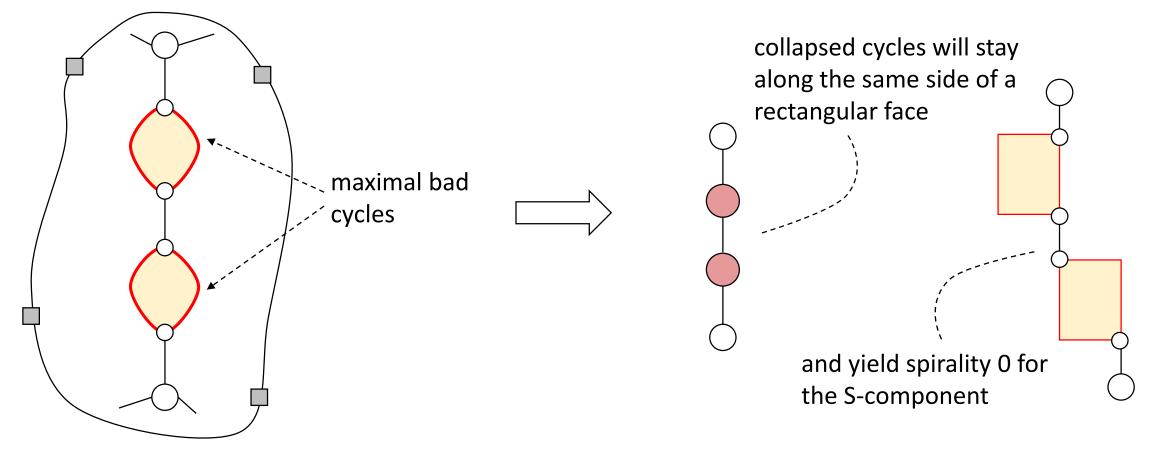


# \end{NoBend-Alg}



### Proof of O3 (inner S-components have spirality at most 4)

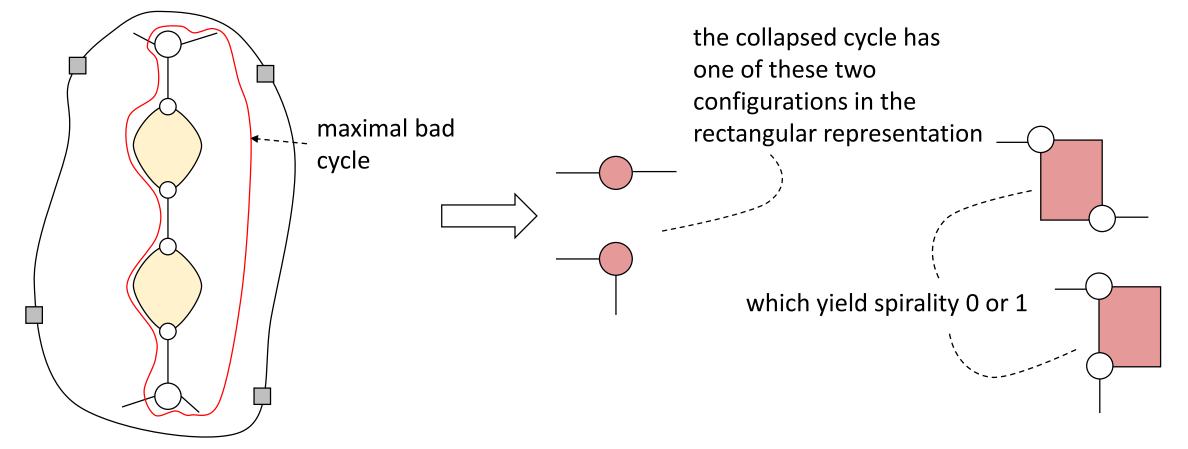
**Case 1.** the S-component is not inside a maximal bad cycle and all its edges are internal





### Proof of O3 (inner S-components have spirality at most 4)

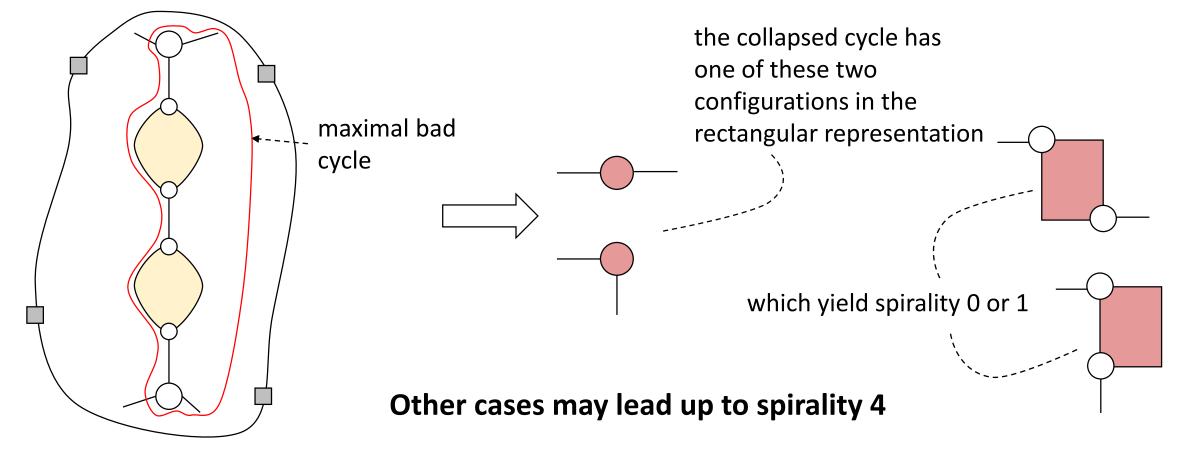
**Case 2.** the S-component is inside a maximal bad cycle that traverses the component





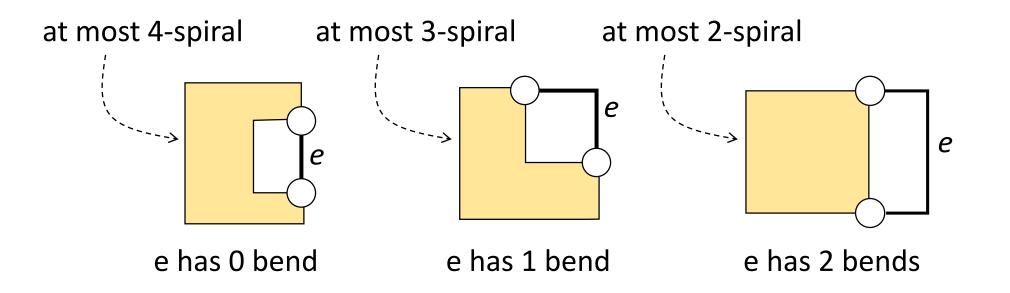
### Proof of O3 (inner S-components have spirality at most 4)

Case 2. the S-component is inside a maximal bad cycle that traverses the component





### Proof of O3 (a root child S-component has spirality at most 4)



Higher values of spirality may only increase the number of bends

# Algorithm

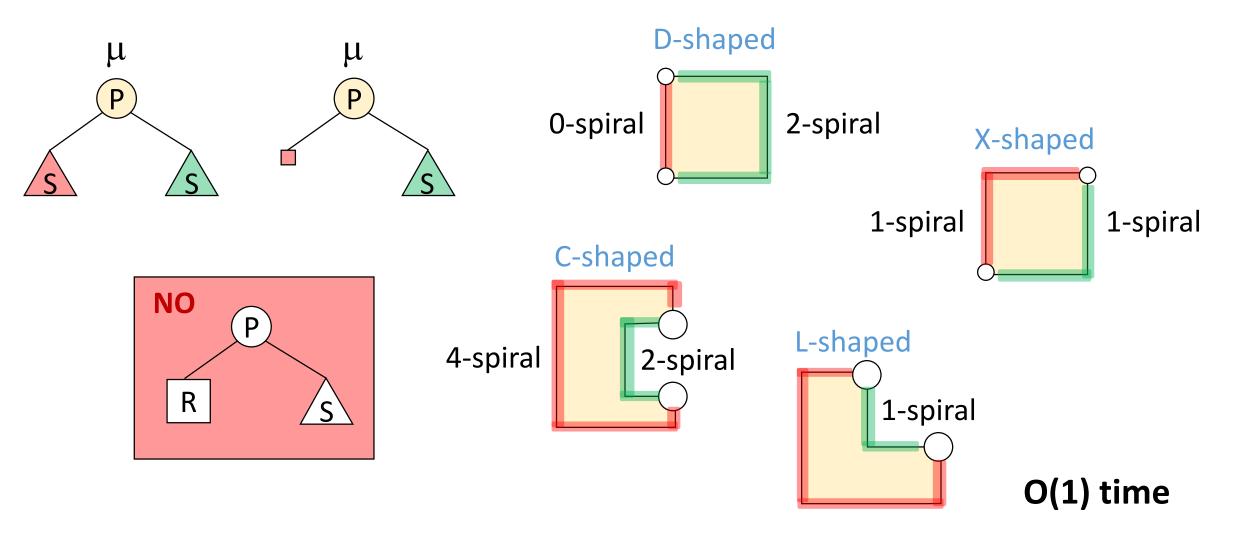
- **input**: biconnected planar 3-graph G with a reference edge *e*
- **output**: bend-min representation H of G with *e* on the external face

- 1. construct the SPQR-tree T of G with respect to *e*
- 2. visit the nodes  $\mu$  of T **bottom-up**:
  - $-\mu$  inner node  $\Rightarrow$  store in  $\mu$  a candidate set of bend-min representations of  $G_{\mu}$ one for each distinct representative shape, thanks to the substitution theorem
  - $\mu$  the root child  $\Rightarrow$  construct H by suitably merging *e* with the candidate representations stored at the children of  $\mu$ ; consider {0, 1, 2} bends for *e*, thanks to O1 of the key-lemma

# Candidate sets for the tree nodes

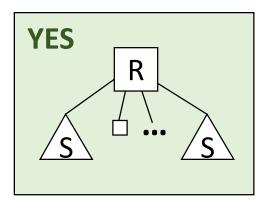
- P/R-node: the cheapest D- and X-shaped representations for the inner nodes and the cheapest D-, C-, and L-shaped representations for the root child —thanks to O2 of the key-lemma
- S-node: the cheapest representation for each value of spirality in {0, 1, 2, 3, 4} -thanks to O3 of the key-lemma

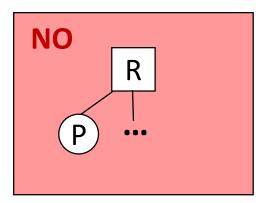


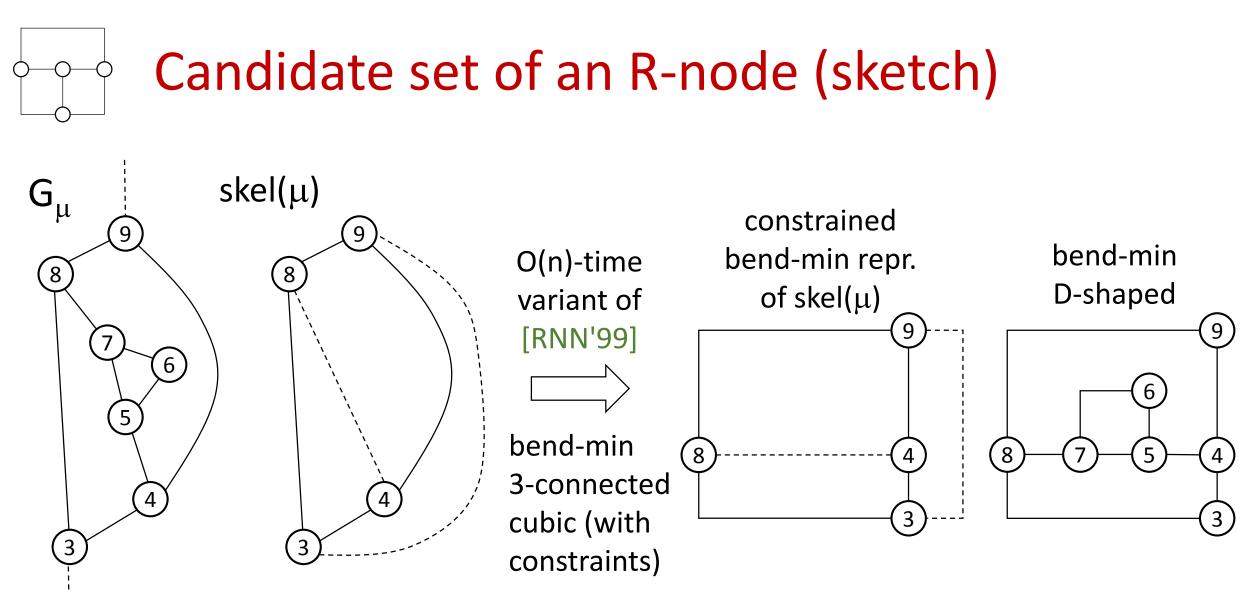




### Each child of an R-node is either a Q- or an S-node



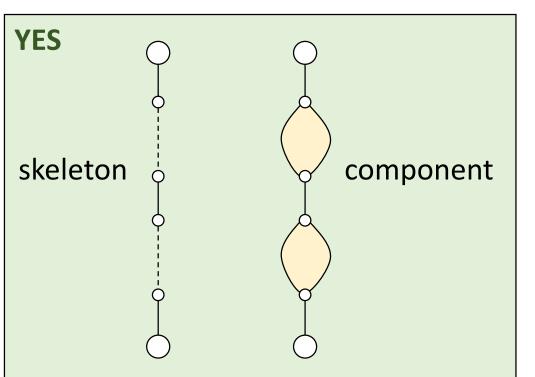


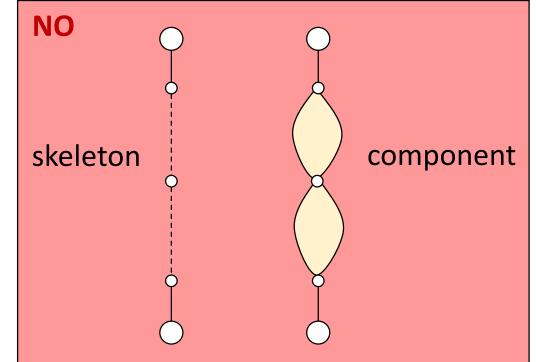


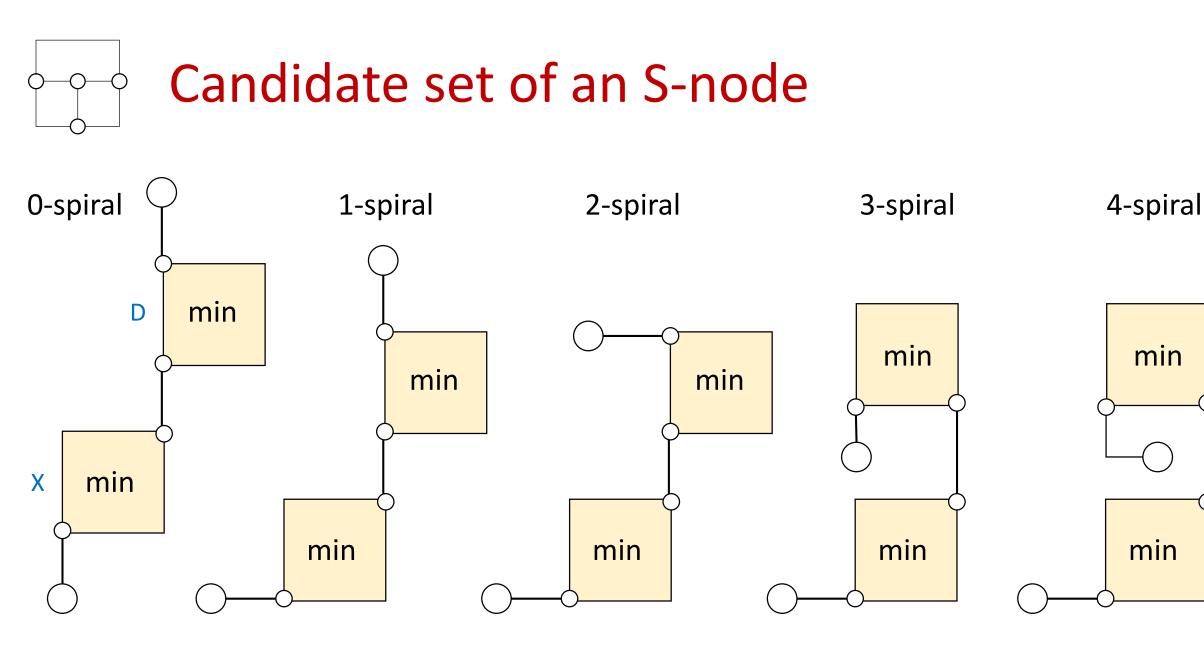
[RNN'99] S. Rahman, S.-I. Nakano, T. Nishizeki:
A Linear Algorithm for Bend-Optimal Orthogonal Drawings
of Triconnected Cubic Plane Graphs. J. Graph Algorithms Appl. 3(4): 31-62 (1999)

 $O(n_{\mu})$  time







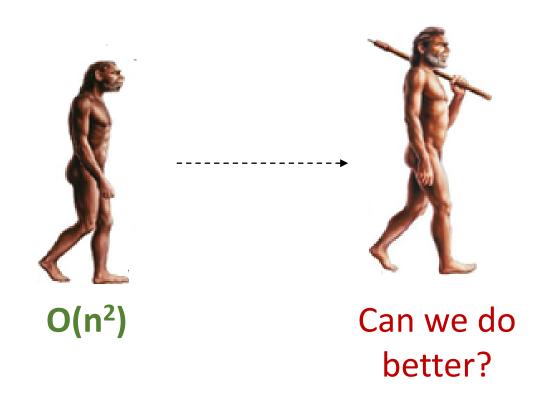


#(extra bends) = max{0, spirality - (#D-shaped + #Q-nodes - 1)}

 $O(n_{\mu})$  time

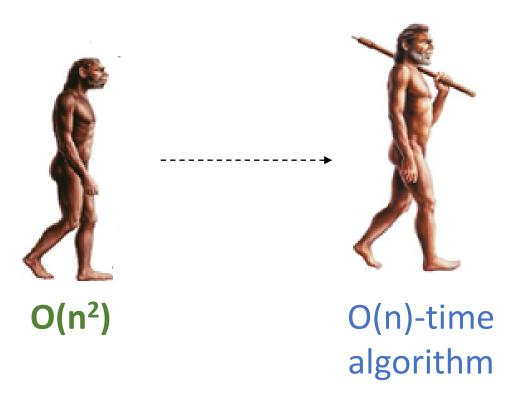


• Is there a subquadratic-time algorithm to compute a bend-minimum orthogonal drawing of a planar 3-graph?



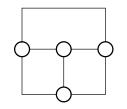


• Is there a subquadratic-time algorithm to compute a bend-minimum orthogonal drawing of a planar 3-graph?



#### Ingredients:

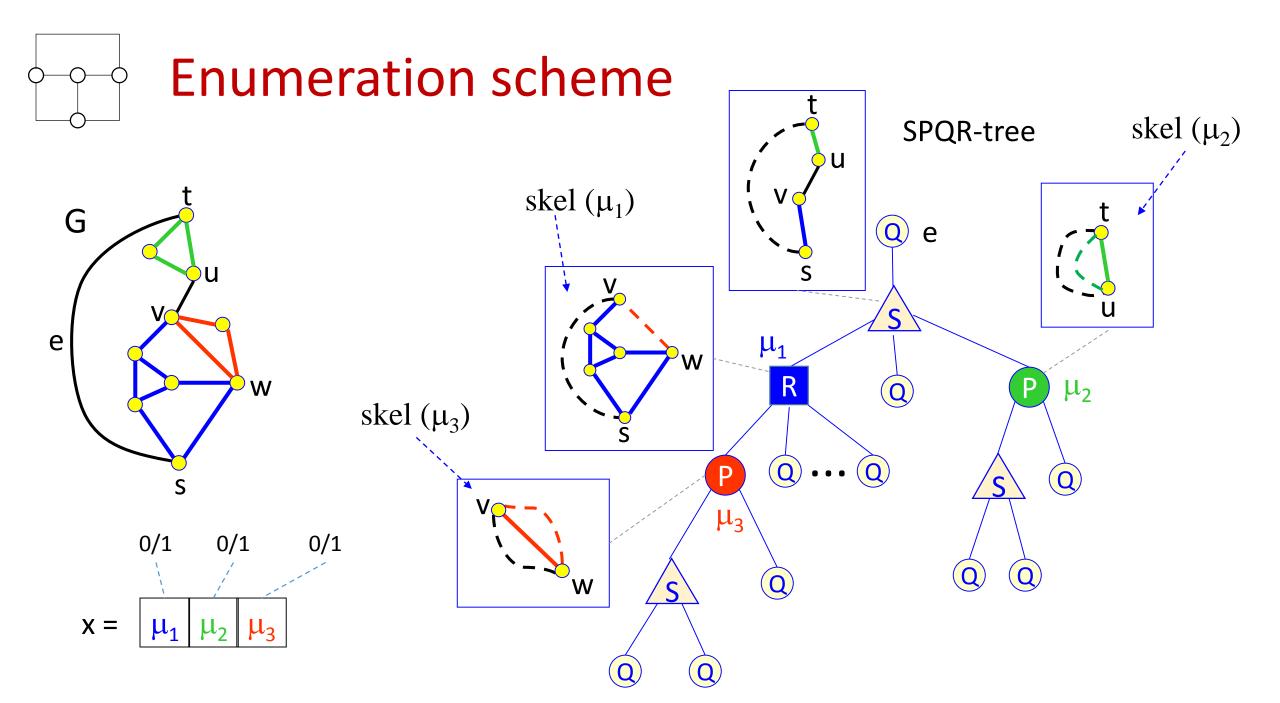
- new data structure for the rigid components
- labeling procedure for the candidate sets
- reusability principle for the SPQR-tree nodes

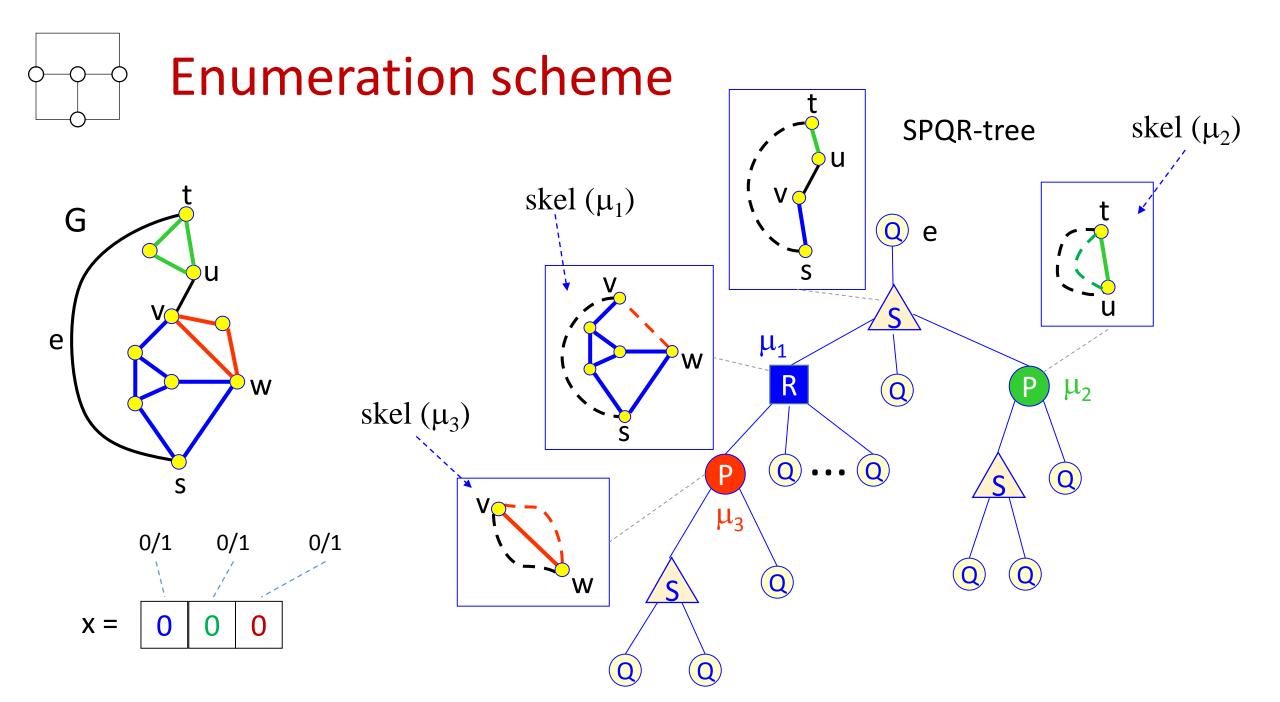


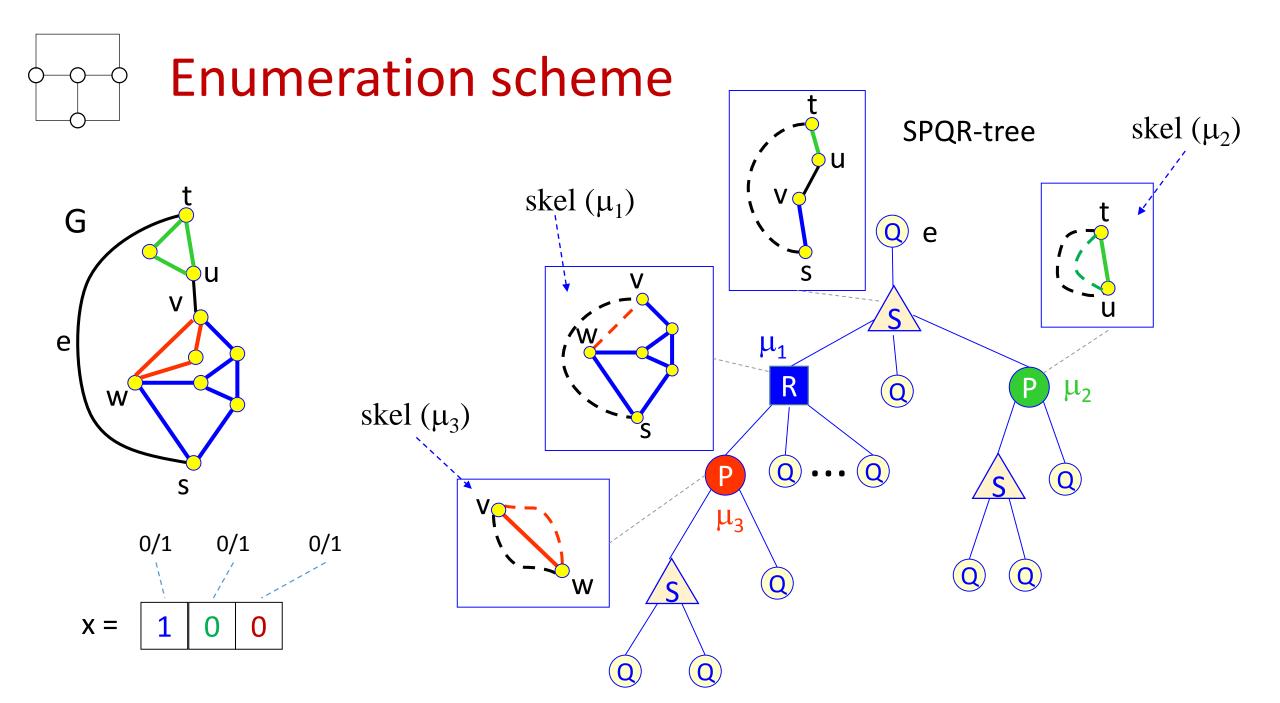
# Bend-minimum orthogonal drawings of planar 4-graphs

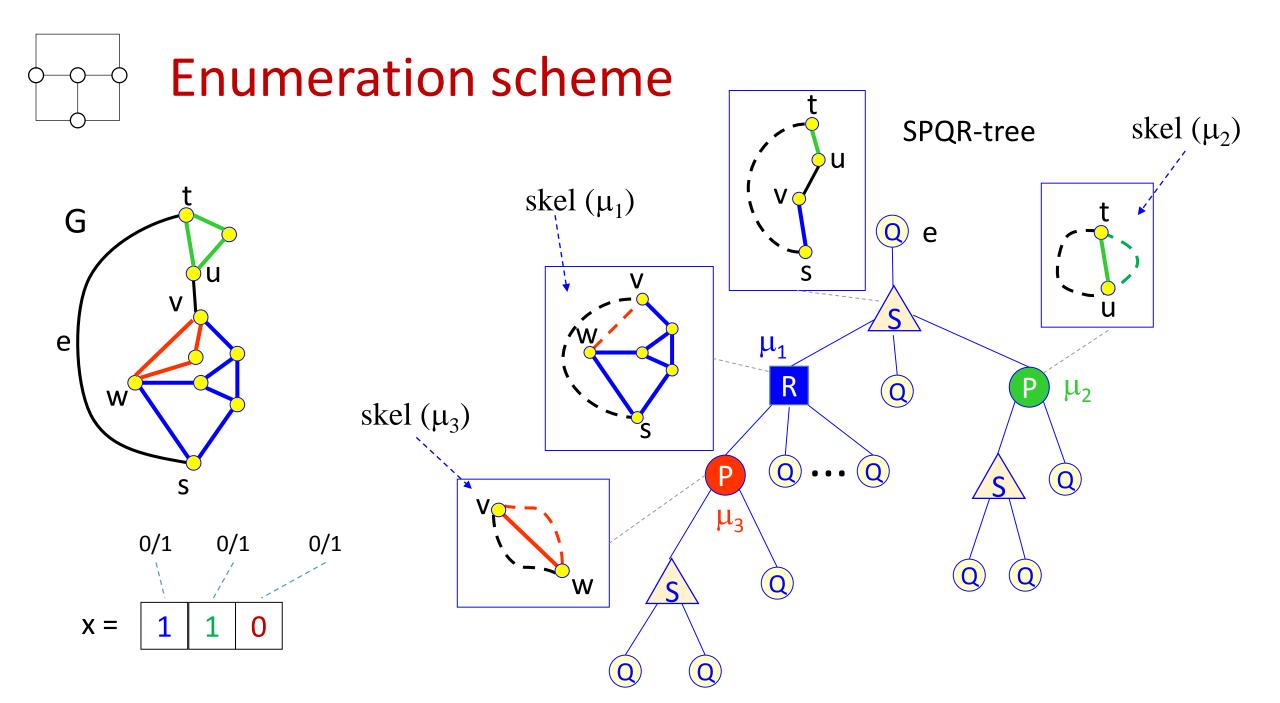
# Bend-min of planar 4-graphs

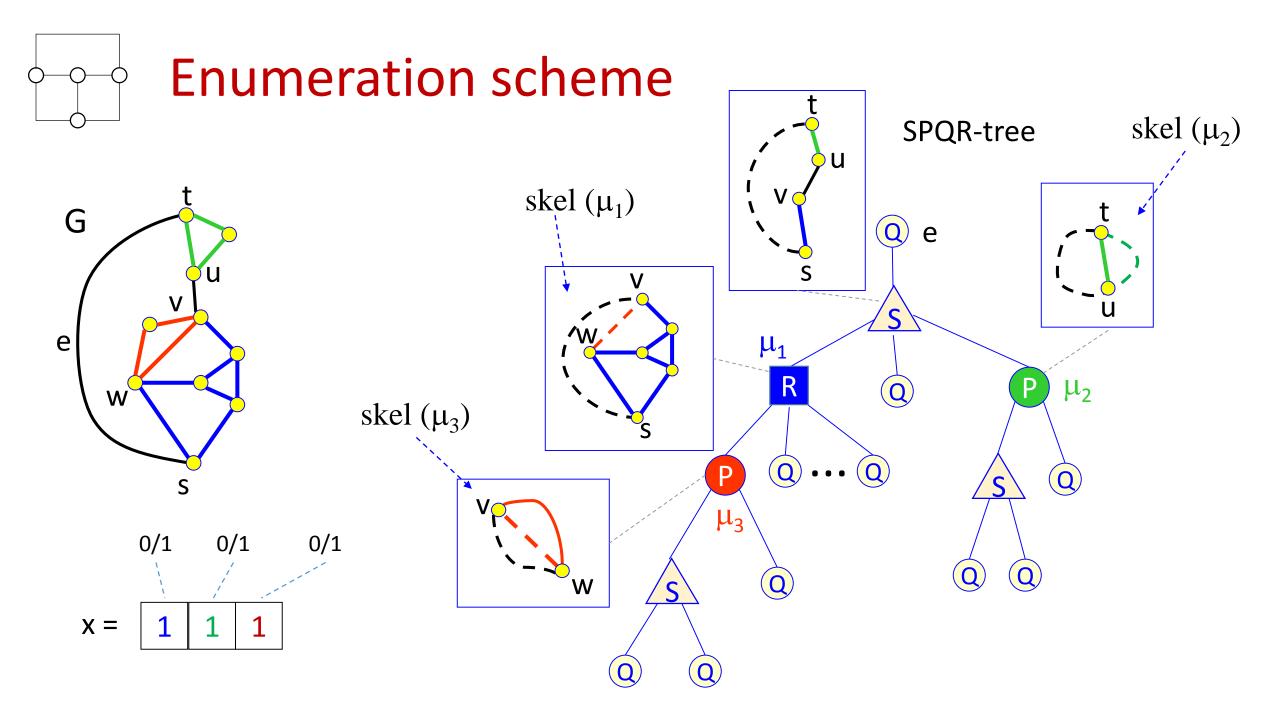
- Branch-and-bound algorithm for a biconnected graph G
  - P. Bertolazzi, G. Di Battista, W. Didimo: Computing Orthogonal Drawings with the Minimum Number of Bends. IEEE Trans. Computers 49(8): 826-840 (2000)
- Ingredients:
  - -enumeration scheme for the planar embeddings of G
  - -effective lower bounds on the number of bends
  - -simple upper bounds on the number of bends

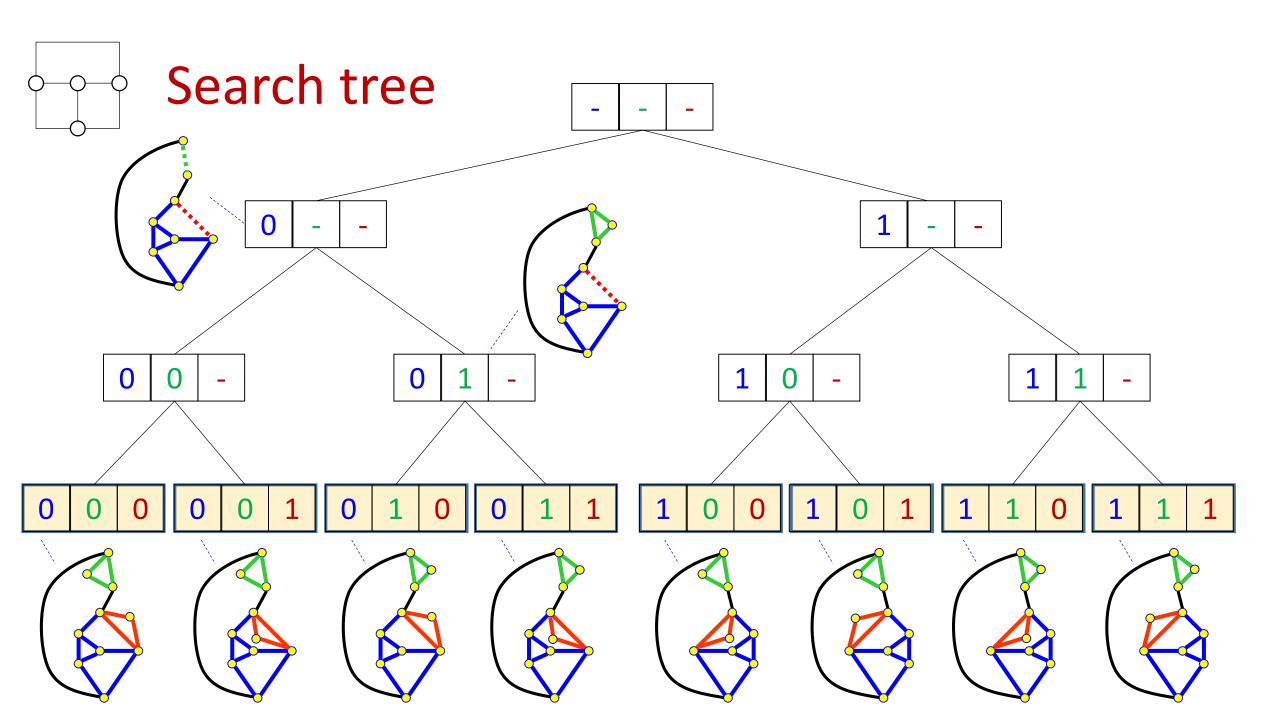


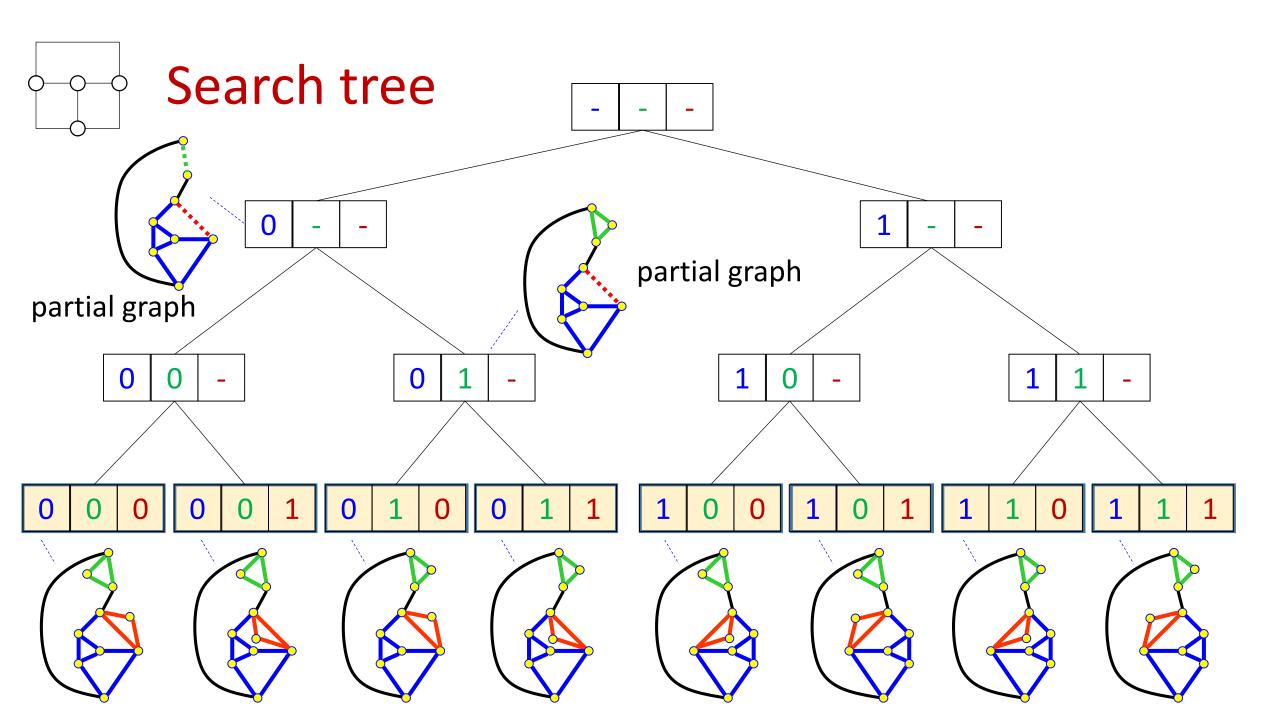






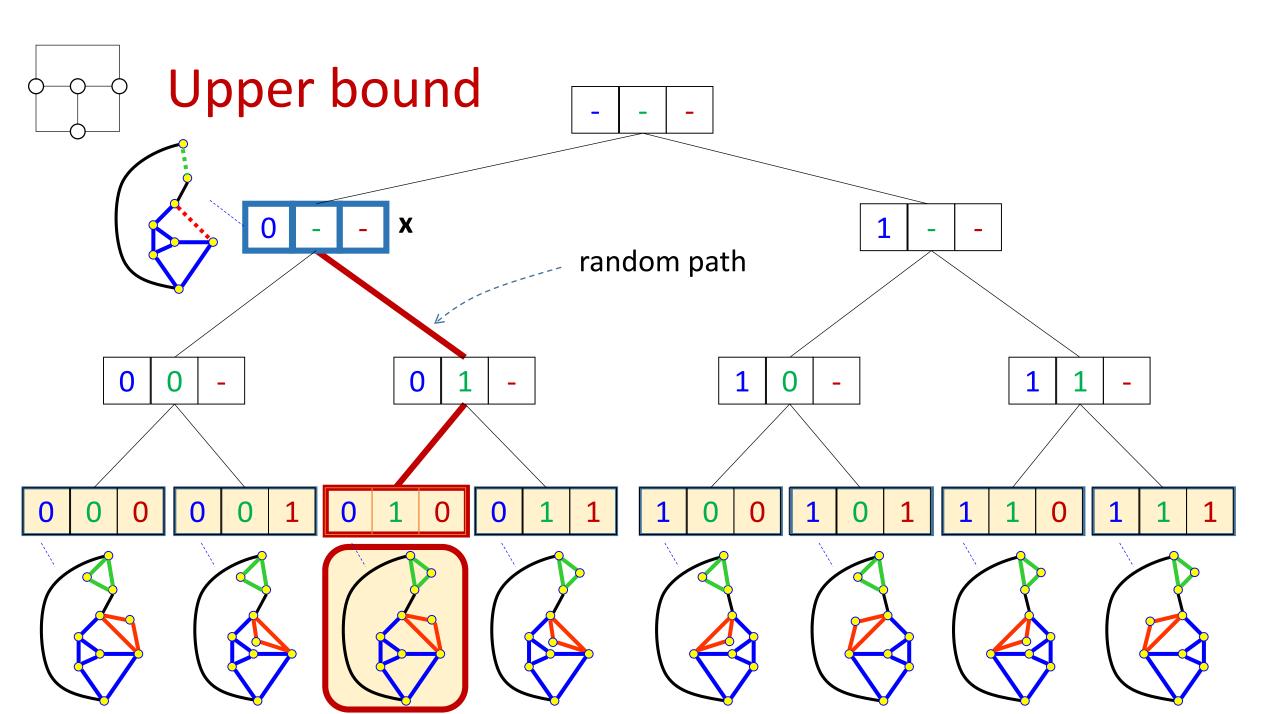


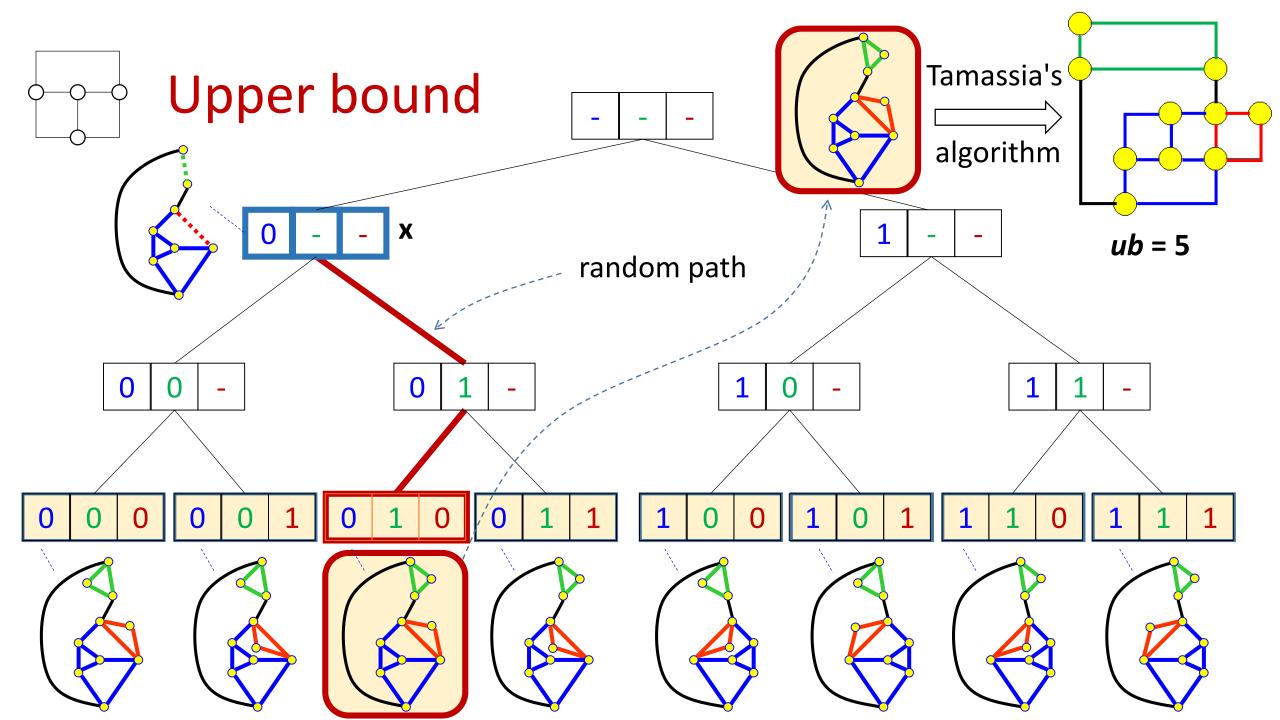




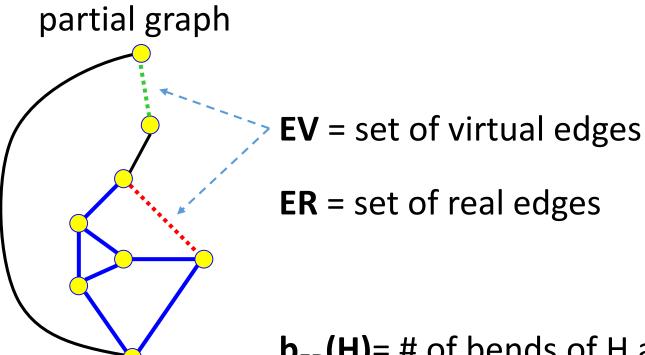
# Branch-and-Bound algorithm

- mb  $\leftarrow$  + $\infty$  // minimum number of bends known so far
- visit the search tree from the root (use a BFS or DFS)
- when a node x is visited:
  - compute an upper bound *ub* on the number of bends of an orthogonal representation with embedding in the subtree rooted at x
    - If (ub < mb) then  $mb \leftarrow ub$
  - compute a lower bound *lb* on the number of bends of an orthogonal representation with embedding in the subtree rooted at x
    - If (lb > mb) then cut x and its subtree
- return mb



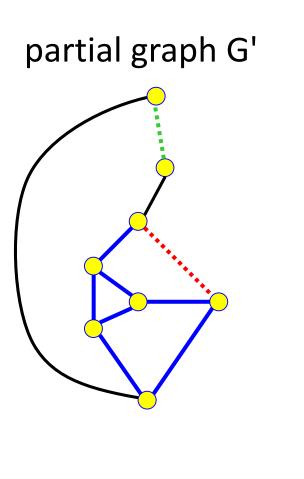






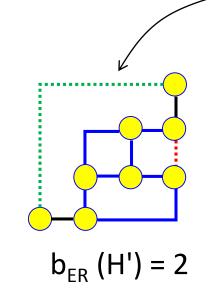
**b**<sub>ER</sub>(**H**)= # of bends of H along the real edges

# Lower bound: Preliminary lemma



H' = representation of G' with minimum bends on ER
H = bend-min representation of G that preserves the embedding of G'

 $b_{ER}(H') \le b_{ER}(H)$ 



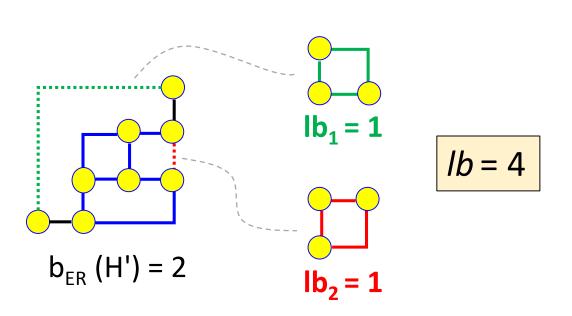
b<sub>ER</sub>(H') can be
computed by
imposing cost 0 for
the bends on the
virtual edges in
Tamassia's flow
network

# Lower bound: Recursive approach

partial graph G'

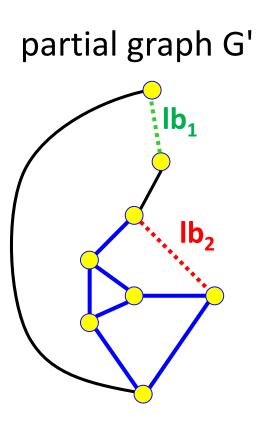
- lb<sub>1</sub>
- **Ib<sub>i</sub>**= lower bounds on the # of bends in the pertinent graph of a component G<sub>i</sub>

 $Ib = b_{FR}(H') + \Sigma_i Ib_i$ 



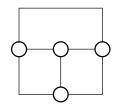
the set of **Ib**<sub>i</sub> can be computed through a bottom-up visit of the SPQR-tree in a pre-processing step

# Lower bound: Further improvement



If some lb<sub>i</sub> is zero, replace the corresponding virtual edge with a simple path  $\pi$  between the poles of G<sub>i</sub> and regard the edges of  $\pi$  as real edges

 $lb = b_{ER}(H') + \Sigma_i lb_i$ 



# Some experimental data

| density/vertices | 10    | 20    | 30    | 40    | 50    | 60    | 70    | 80    | 90    | 100   |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1.1              | 6     | 10    | 10    | 25    | 25    | 10    | 10    | 4     | 13.33 | 0     |
| 1.2              | 37.5  | 32.38 | 27    | 26.33 | 41.3  | 38.67 | 32.1  | 17.32 | 33.28 | 31.76 |
| 1.4              | 20.82 | 22.31 | 19.99 | 19.92 | 22.35 | 28.99 | 24.88 | 16.59 | 20.36 | 14.2  |
| 1.6              | 19.75 | 15.05 | 20.76 | 12.16 | 13.14 | 12.4  | 15.92 | 11.87 | 14.61 | 12.65 |
| 1.8              | 13.04 | 11.05 | 10.46 | 10.08 | 8.15  | 9.94  | 4.07  | 4.77  | 4.21  |       |
|                  |       |       |       |       |       |       |       |       |       |       |

% avg. improvement on the number of bends w.r.p. to a bend-minimum orthogonal drawing in the fixed embedding setting

### Additional reading

• *P. Mutzel, R. Weiskircher*: Bend Minimization in Planar Orthogonal Drawings Using Integer Programming. SIAM Journal on Optimization 17(3): 665-687 (2006)

# Bend-min of planar 4-graphs: Open problem

 Problem: Let G be a biconnected 4-planar graph with a given combinatorial embedding. is there an o(n<sup>2.5</sup>)-time algorithm that computes a bend-minimum orthogonal drawing of G overall possible choices of the external faces? (the combinatorial embedding is preserved)