September 18, 2019

Pushing the Boundaries of Interaction in Data Visualization

John Stasko

School of Interactive Computing Georgia Institute of Technology stasko@cc.gatech.edu

Information Visualization

Developing representations for data that are not inherently spatial (abstract)

Sports statistics Stock trends Car attributes Connections between criminals

• • •

Applications of Visualization

Presentation(Explanatory)Analysis(Exploratory)

John Stasko @johntstasko

I grow increasingly convinced every day that data visualization for analytical, exploratory purposes and data visualization for communicative, presentational purposes are more different than most people think. #dataviz

12:08 PM · Aug 22, 2019 · Twitter Web App

|| View Tweet activity

38 Retweets 224 Like

"Whatever"

1. Presentation

Purpose:

Communicate data and ideas Explain and inform Provide evidence and support Influence and persuade

Frequent presentation goals

Clarify Focus Highlight Persuade

May just show a few variables and/or a subset of the data cases

Presentation Characteristics

"Insights" already known, need to be communicated

Usually static

An Example

Ice cream flavor preferences based on 2014 survey of elementary school students (n=216)

Chocolate was most popular flavor

among elementary students surveyed

Source: 2014 survey of elementary school students (n=216)

https://depictdatastudio.com/how-to-tell-a-story-with-data-titles-subtitles-annotations-dark-light-contrast-and-selective-labeling/

Static infographics

CONCEPT & DESIGN Ivan Cash SOURCE 49 infographics collected at random from www.good.is/infographics

9 http://www.ivan.cash/infographic-of-infographics

Nobels, no degrees

This visualization explores Nobel Prizes and graduate qualifications from 1901 to 1912, by analysing the age of recipients at the time prizes were awarded, average age evolution through time and among categories, graduation grades, main university affiliations and the principal hometowns of the graduates.

1901

Chicago

CHEMISTRY

How to read it Each dot represents a Nobel laureate, each recipient is positioned according to the year the prize was awarded (x axis) Harvard and age of the person at the time of the award (y axis). MIT 2012 Stanford caltech Columbia cambridge Berkeley 1931 2 2012 7 51 1921 7 17 23 7 10 13 9 1 (59 years) BCONONAL BCONONAL PHYSICS (59 years LITERATUL 4. (59 years Sibling pride: Jan and Nikolaas Tinbergen, the only brothers to win a prize each (economics and medicine) Multiple awards: Marie Curie, the first recipient of two Nobel Prizes (chemistry and physics) The self-taught: Guglielmo Marconi, the only Nobel laureate (physics) without a degree (59 years).

2. The oldest: Leonid Hurwicz, The posthumous: Erik Axel Karlfeldt, the first person to be awarded a Nobel Prize after his death awarded at age 90

The youngest: Lawrence Bragg, awarded at age 25

7. The First Lady of Economics: Elinor Ostrom, the only female recipient of the Nobel Prize in economics

http://www.accurat.it

10

http://weather-radials.com/

Interactive visualizations

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Data videos

http://www.fallen.io/ww2/

https://vimeo.com/354276689

about connections, but in completely different ways. From a royal family tree, to those existing between

https://www.visualcinnamon.com/

....

Royal Constellations

	Current currel lander					
-		parent - child	husband - wife			
•	Famous royal					
	Other people	1 degrees of separ	ation (on hover) 6			

් [CHI 2020] Animated Data Grap 🕽	🔇 💟 Eyeo 2019 - Nadieh Bremer on 🗙 💟 Eyeo 2019 - Nadieh Bremer on 🗙 Royal Constellati	ons 🛛 🗙 🛸 How to Record Screen on	Wind X +	- 🗆 X
 	(i) 🛈 www.datasketch.es/october/code/nadieh/	E ··· ⊠ ☆	\bigcirc record my screen in windows →	II\ 🗊 🔮 😑
🗘 Most Visited 🔚 Marietta 🕮 Traffic	🏂 II Lab 💷 1331 👃 1331info 📅 4460 🔮 7450 🗑 Labs 🔌 O365 🔌 Canvas 📔 Piazza 🔮	Discord 🖬 T-Square Golf M Gmail 📑 FE	3 🝠 IH 🕱 ihmga 🖪 Jazz 🌖 Chase 🔤 WF	🎔 Twitter 🏂 Overleaf 👾 PCS ≫

Royal Constellations

A 1000 years of ancestral connections in the European royal families

Discover the shortest path between two royals

If you click on a star you will select & fix that person. By clicking on another star the visual will show you the shortest path between the two (although sometimes multiple shortest paths exist. The algorithm will then show one of these). To clear the fix on the first person, click anywhere that's not a circle. Royal & aristocratic families are known for their fondness of marrying within their own clique. Restraining aggression between two families, creating a stronger front towards a third family, increasing territorial acquisitions, legal claim to a foreign throne through inheritance are some of the most common reasons.

This leads to very interesting & entangled family trees which the visual below tries to convey. It shows how all 10 of the current hereditary royal leaders of Europe can be connected to each other through their ancestors. We don't have to look very far back. Even the most distant royal relatives have their shared forebears born after the year 1700.

Each "star" below is a person, placed approximately on their year of birth in the vertical direction and to their closest relative who is a royal leader today in the horizontal direction. Hover over a star to see how many relatives can be connected to that person in "6-degrees of separation". For highly connected royals, such as Pauline of Württemberg, born in 1810, who is a relative of 6 current royal families, it may take a second to calculate all connections.

This genealogy is far from complete, or perfect, probably many more interconnections exist, but this peek into the history of Europe's royals shows that it's all one big (happy?) family.

What might graph visualization building blocks look like?

Graph-Level Operations (GLOs)

Encapsulated manipulations of graph visualizations

Stolper, et al *TVCG* (InfoVis) '14

Graph Representations

23

34 Operations, 5 Categories

Positioning Nodes

- 1. Align Nodes
- 2. Evenly Distribute Nodes
- 3. Evenly Distribute Nodes by Attribute
- 4. Substrate Nodes by Attribute
- 5. Evenly Distribute Nodes within Substrates
- 6. Position Nodes Relatively
- 7. Evenly Distribute Nodes Radially by Attribute
- 8. Evenly Distribute Nodes Radially
- 9. Position Nodes Radially by Attribute
- 10. Substrate Nodes Radially by Attribute
- 11. Evenly Distribute Nodes Along Plot Radius
- 12. Evenly Distribute Nodes Along Plot Radius
- 13. Position Nodes Along Plot Radius by Attribute
- 14. Substrate Nodes Along Plot Radius
- 15. Position Nodes Along Plot Radius by Constant
- 16. Apply an Algorithm to the Nodes

Modifying Element Properties

- 17. Size Nodes by a Constant
- 18. Size Nodes Relatively by a Continuous Attribute
- 19. Display All Links
- 20. Display Selected Links
- 21. Hide Links
- 22. Display Links as Straight
- 23. Display Links as Curved
- 24. Display Links as Circles

Cloning Nodes

- 25. Clone Active Generation
- 26. Select Generation k
- 27. Set Source Generation k
- 28. Set Target Generation k
- 29. Remove Generation k

Aggregating Nodes and Edges

- 25. Clone Active Generation
- 26. Select Generation k
- 27. Set Source Generation k
- 28. Set Target Generation k
- 29. Remove Generation k
- 30. Aggregate by Attribute
- 31. Aggregate by Attribute and Attribute
- 32. Deaggregate Generation k

Modifying Display Properties

- 33. Show Axis
- 34. Hide Axis

GLO-STTX: Graph-Level Operations for Specifying Techniques and Interactive exploration

GLO-STTX: Graph-Level Operations for Specifying Techniques and Interactive exploration

2. Analysis

Purpose: Explore data Assess a situation Determine how to proceed Decide what to do

Frequent analysis goals

Show many/all variables Illustrate overview and detail Facilitate comparison

Display may not be easy to interpret at first

Analysis Characteristics

"Insights" not yet known, need to be found

If data is large enough, usually interactive

Constituents

Two key aspects of data visualization Representation Interaction

"The effectiveness of information visualization hinges on two things: its ability to clearly and accurately represent information and our ability to interact with it to figure out what the information means."

S. Few, Now you see it

Chad Stolper

Interaction How manifested today?

Interaction Can we do more?

Employ interaction in a more fundamental manner to strengthen the power of visualization

Some examples...

JR Smo	ooth Jazz Music - JAZZRAD	K 🕵 Graph Drawing 2019	🗙 🔶 Daniel Arch	ambault - Google Sc 🗙	+							—		\times
(←) → C	۵	(i) 🔒 https://scholar.google.c	om/citations?user=Dw!	SNWBoAAAAJ&hl=e	en&oi=ao		⊠ ☆	Q scholar		\rightarrow		\ ⊡	٢	≡
A Most Visited	d 🔚 Marietta 👜 Traffic	🔌 ll Lab 🔤 1331 🔥 1331info	💦 4460 🔮 7450 😨 L	abs 🔌 0365 🔌 Ca	anvas 👂 Piazza	🤤 Discord	T-Square	Golf M Gma	ail 📑 FB	🍠 IH 🛛 🎘 ihmga	JR Jazz	🕻 Chase	🐜 WF	>>
	o <mark>gle</mark> Scholar											Q		Â
		Daniel Archamba Swansea University Verified email at swansea.ad Information Visualization	ult .uk iraph Drawing Huma	in Computer Intera	ction		FOLLOW	Cited b Citations h-index i10-indes	y s x	All 1777 22 32	VIEW A Since 20 12	LL 14 20 19 29		
	TITLE				(CITED BY	YEAR				2	60		
	Animation, small m D Archambault, H Purc IEEE Transactions on N	nultiples, and the effect of m hase, B Pinaud Visualization and Computer Grapt	ental map preservat	ion in dynamic gr	raphs	225	2010				1	95 30		
	Topolayout: Multile D Archambault, T Munz IEEE transactions on vi	vel graph layout by topolog zner, D Auber isualization and computer graphic	i cal features s 13 (2), 305-317			191	2007		2.2014.20	45 2040 2047 2048	2010	65 0		
GrouseFlocks: Stee D Archambault, T Munz IEEE transactions on vi A review of tempor B Bach, P Dragicevic, I		erable exploration of graph zner, D Auber isualization and computer graphic	hierarchy space s 14 (4), 900-913			143	2008	2012 201	3 2014 20	15 2016 2017 2016	2019			
		al data visualizations based D Archambault, C Hurter, S Carpe	I on space-time cub	e operations		134	2014	Co-aut	nors		VIEW A	LL		
	Fully automatic visit P Simonetto, D Auber, Computer Graphics For	ualisation of overlapping se D Archambault rum 28 (3), 967-974	ts			120	2009		David Aub Professor Helen Pur	er LaBRI - University chase	of B	>		
	The tulip 3 framework based on relational D Auber, D Archambau	ork: A scalable software lib I data It, R Bourqui, A Lambert, M Math	ary for information v iaut, P Mary,	isualization appli	cations	65	2012		Tamara M Professor	u nzner of Computer Scien	ce,	>		
	A descriptive frame	ework for temporal data visu	alizations based on	generalized space	ce-time	60	2017	()	Guy Mela Professor	n çon of Computer Scien	ce,	>		
	B Bach, P Dragicevic, I Computer Graphics For	D Archambault, C Hurter, S Carpe rum 36 (6), 36-61	ndale					2	Romain B Assistant	ourqui professor in compu	iter	>		
	TULIP 5 D Auber, D Archambau	lt, R Bourqui, M Delest, J Dubois	A Lambert,			59	2017		Antoine La Université	ambert Bordeaux 1		>		
	Mental map preser D Archambault, HC Pu	vation helps user orientatio	n in dynamic graphs			56	2013	2	Paolo Sim Postdoc F	onetto Research Associate	e, U	>		
	Graph Drawing 7704, 4	75-486							Derek Gre	ene		>		~

http://iilabgt.org/vibliography

Scroll to zoom, Click to pin node, Double click to unpin

Tasks

What is author X's profile?

What are the most cited papers?

What does this paper cite and who cites it?

How have themes changed over the years?

How active has organization Y been?

CiteVis

Demo

Stasko, Choo, Han, Hu, Pileggi, Sadana & Stolper InfoVis poster '13
Interaction Why interact?

Toward a Deeper Understanding of the Role of Interaction in Information Visualization

Ji Soo Yi, Youn ah Kang, John T. Stasko, Member, IEEE, and Julie A. Jacko

Abstract—Even though interaction is an important part of information visualization (Infovis), it has gamered a relatively low level of attention from the Infovis community. A few frameworks and taxonomies of Infovis interaction techniques exist, but they typically focus on low-level operations and do not address the variety of benefits interaction provides. After conducting an extensive review of Infovis systems and their interactive capabilities, we propose seven general categories of Interaction techniques widely used in Infovis: 1) Select, 2) Explore, 3) Reconfigure, 4) Encode, 5) Abstract/Elaborate, 6) Filter, and 7) Connect. These categories are organized around a user's intent while interacting with a system rather than the low-level interaction techniques provided by a system. The categories can act as a framework to help discuss and evaluate interaction techniques and hopefully lay an initial foundation toward a deeper understanding and a science of interaction.

+

Index Terms—Information visualization, interaction, interaction techniques, taxonomy, visual analytics

1 INTRODUCTION

Information visualization (Infovis) systems, at their core, appear to have two main components: representation and interaction. The representation components: representation and interaction and how that representation is rendered on the display. The interaction component involves the dialog between the user and the system as the user explores the data set to uncover insights. The interaction component is roots he in the area of human-computer interaction (HCI). Although discussed as two separate components, representation and interaction clearly are not mutually exclusive. For instance, interaction with a system may activate a change in representation. Nonetheless, the two components seem to compose the two fundamental aspects of Infovis systems, and it seems reasonable to consider what each contributes to an end-user's

Information visualization (Infovis) systems, at their core, appear to have two main components: representation and interaction. The representation component, whose roots lie in the field of computer graphics, concerns the mapping from data to representation and how that representation is rendered on the display. The interaction of a user can be further amplified (e.g., [15, 29]).

The importance of interaction and the need for its further study seem undisputed. For example, the recent book Illuminating the Path: The Research and Development Agenda for Visual Analytics calls for further research on interaction:

"Recommendation 3.3: Create a new science of interaction to support visual analytics. The grand challenge of interaction is to develop a taxonomy to describe the design space of interaction techniques that supports the

Intent

- 1. Select
- 2. Explore
- 3. Reconfigure
- 4. Encode
- 5. Abstract/Elaborate
- 6. Filter
- 7. Connect

Yi, Kang, Stasko & Jacko *TVCG* (InfoVis) '07

Interaction

How do we interact?

Traditional – Desktop: keyboard, mouse

New – Tablet: fingers and multi-touch

<u>Challenges</u> Limited real estate Small visual elements to select "Fat finger" problem Lack of mouse hover

...

http://www.cc.gatech.edu/gvu/ii/touch/

Moving to Tablets

Goal: Bring traditional infovis charts to the tablet

Sadana & Stasko AVI '14, EuroVis '16

Designing and Implementing an Interactive Scatterplot Visualization for a Tablet Computer

Ramik Sadana and John Stasko Georgia Institute of Technology

> AVI 2014 Como, Italy

> > Start with a scatterplot

Integrate with multiple views

How about graphs/networks?

Figure 1: Two variants of TouchPlucking. (a) a single edge is selected and plucked (b) a drag starting on a blank space plucks all edges crossed.

Figure 2: Plucking of a single edge out of a congested area using two touches. The node is held for 1.5s, which straightens out all the node's edges. A second touch drags along the edge to select the edge, after which normal plucking resumes.

Figure 4: While plucking (a), a bundle of edges can be pinned by holding the touch for more than 1.5 s (b).

Figure 7: Performing a funnel gesture on edges clusters all edges which are oriented in the direction of the gesture movement and bundles them.

Figure 3: Bringing two active plucking touches close to each other merges them.

Multi-hand gestures for manipulating edges

"A Set of Multi-touch Graph Interaction Techniques" Schmidt, Nacenta, Dachselt, Carpendale ITS '10

Tangraphe

Interactive Exploration of Network Visualizations using Single Hand, Multi-touch Gestures

<u>Operations</u>: Selection Adjacency-based exploration Layout modification Navigation

Thompson, Srinivasan, & Stasko AVI '18

m

- Links
- Region
- First-degree network

- Nodes
- Links

- Region
- First-degree network

- Nodes
- Links
- Region

• First-degree network

- Nodes
- Links
- Region
- First-degree network

Adjacency-based Exploration

• Expand/Collapse

Layout Modification

- Pinning nodes
- A
- Positioning neighbors

Layout Modification

- Pinning nodes
- Positioning neighbors

Navigation

• Pan & Zoom

Single hand Gestures

Single hand Gestures

• Enable interaction on mobile devices

Single hand Gestures

- Enable interaction on mobile devices
- Facilitate additional input devices

Why just touch?

How about speech & NLI?

What would people say to a visualization?

Operations

Find Nodes

Find Connections

Find Path

Filter Nodes

Color Nodes

Size Nodes

Interface Actions

Orko

http://www.cc.gatech.edu/gvu/ii/naturalvis/

Network of European soccer players Edges: Club or country connection

Srinivasan & Stasko *TVCG* (InfoVis) '17

Operation:

Find Connections

Target

...

. . .

. . .

Find Ronaldo's connections. Show connections between Pogba and Bale. Highlight the shortest path from Evra to Kroos. Color by position. Size nodes by betweenness centrality. Only show German forwards.

Are any of these players right footed?
Filter by this player's club.
Show connections of these players.
Color nodes by country > Now club > How about position?
Show German strikers with more than 30 goals > How about French strikers?

Explicit

...

. . .

. . .

Contextual & Follow-up

High-level

Find Ronaldo's connections. Show connections between Pogba and Bale. Highlight the shortest path from Evra to Kroos. Color by position. Size nodes by betweenness centrality. Only show German forwards.

Are any of these players right footed?
Filter by this player's club.
Show connections of these players.
Color nodes by country > Now club > How about position?
Show German strikers with more than 30 goals > How about French strikers?

Explicit

. . .

. . .

. . .

Find Ronaldo's connections. Show connections between Pogba and Bale. Highlight the shortest path from Evra to Kroos. Color by position. Size nodes by betweenness centrality. Only show German forwards.

Are any of these players right footed?
Filter by this player's club.
Show connections of these players.
Color nodes by country > Now club > How about position?
Show German strikers with more than 30 goals > How about French strikers?

Explicit

. . .

. . .

. . .

Contextual & Follow-up

High-level

Find Ronaldo's connections. Show connections between Pogba and Bale. Highlight the shortest path from Evra to Kroos. Color by position. Size nodes by betweenness centrality. Only show German forwards.

Are any of these players right footed? Filter by this player's club. Show connections of these players. Color nodes by country > Now club > How about position? Show German strikers with more than 30 goals > How about French strikers?

But it's even trickier...

Show nodes connected to Ronaldo

Show Ronaldo's connections. Find players linked to Ronaldo. Highlight players who play with Ronaldo. Which players play in the same team as Ronaldo? Show nodes directly connected to Ronaldo. Find nodes adjacent to Ronaldo. Show Ronaldo's teammates. Who all is Ronaldo directly connected to? Find players with a direct link to Ronaldo. Find direct connections of Ronaldo.

. . .

Goal: To find connections of high goal scoring players for England

"Show connections of English players with more than 20 goals"

- > "Show England players"
- > "Show players with more than 20 goals"
- > "Show connections"

<u> </u>	
<u> </u>	
<u> </u>	t

"Show connections of these players"

"Show English players with more than 20 goals"

"Show connections"

Ambiguity Widgets

Query Manipulation Widgets

User Study

Six participants

- Network of European soccer players
- Given series of ten questions/tasks to accomplish (no training) ~30 minutes

	P1 P2			P3			P4			P5			P6						
	S	Т	ST	S	Т	TS	S	Т	ST	S	Т	ST	S	Т	ST	S	Т	ST	TS
T1			1	2					1			1			1	1			
T2	2			1			1					1			1	1			
Т3	2	2	1	3	1		1		1	3	1		3	1		2			
T4	2		1	3			4					3		6		3			
T5	2			2				1	1			1	2	4		4	1	1	
T6	1		1	1				2	1	1			1	3		4			
T7	1	1		2	3		1	1	1		1	1	3	1		2	2		
T8	1		1	1			1	1	1			1	2	1		1			
Т9	2			2					2	2			2	1		1		2	
T10	2	2	2	8	1	2		6	2	2	5		2	5		2	3		1

Participants

Speech (individually) was the dominant input modality (~50%)

	P1			P2			P3			P4			P5			P6				
	S	Т	ST	S	Т	TS	S	Т	ST	TS										
T1			1	2					1			1			1	1				
T2	2			1			1					1			1	1				
Т3	2	2	1	3	1		1		1	3	1		3	1		2				
T4	2		1	3			4					3		6		3				
T5	2			2				1	1			1	2	4		4	1	1		
Т6	1		1	1				2	1	1			1	3		4				
T7	1	1		2	3		1	1	1		1	1	3	1		2	2			S: Speech T: Touch
Т8	1		1	1			1	1	1			1	2	1		1				ST: Speech+Toucl TS: Touch+Speecl
Т9	2			2					2	2			2	1		1		2		
T10	2	2	2	8	1	2		6	2	2	5		2	5		2	3		1	

Participants

Only three instances of sequential input where touch preceded speech

	P1		P2		P3			P4			P5			P6						
	S	Т	ST	S	Т	TS	S	Т	ST	S	Т	ST	S	Т	ST	S	Т	ST	TS	
T1			1	2					1			1			1	1				
T2	2			1			1					1			1	1				
Т3	2	2	1	3	1		1		1	3	1		3	1		2				
T4	2		1	3			4					3		6		3				
T5	2			2				1	1			1	2	4		4	1	1		
Т6	1		1	1				2	1	1			1	3		4				
T7	1	1		2	3		1	1	1		1	1	3	1		2	2			S: Speech T: Touch
Т8	1		1	1			1	1	1			1	2	1		1				ST: Speech+Touch TS: Touch+Speech
Т9	2			2					2	2			2	1		1		2		
T10	2	2	2	8	1	2		6	2	2	5		2	5		2	3		1	

Participants

30 instances of sequential input where speech preceded touch

	P1 P2			P3			P4			P5				F						
	S	Т	ST	S	Т	TS	S	Т	ST	S	Т	ST	S	Т	ST	S	Т	ST	TS	
T1			1	2		-			1		-	1		-	1	1			-	
T2	2			1			1					1			1	1				
Т3	2	2	1	3	1		1		1	3	1		3	1		2				
T4	2		1	3			4					3		6		3				
T5	2			2				1	1			1	2	4		4	1	1		
Т6	1		1	1				2	1	1			1	3		4				
T7	1	1		2	3		1	1	1		1	1	3	1		2	2			S: Speech T: Touch
Т8	1		1	1			1	1	1			1	2	1		1				ST: Speech+Touch TS: Touch+Speech
Т9	2			2					2	2			2	1		1		2		
T10	2	2	2	8	1	2		6	2	2	5		2	5		2	3		1	

Participants

Qualitative Feedback

Positive

"It [multimodal interaction] was fun to use and a very intuitive way to explore a network"

"I was surprised by the speech feature. I did not expect it to work as well as it did"

"...having worked with many visualization programs before, having to go through and manually clicking is really annoying especially when you have a ton of dropdowns. So I really like the speech feature, I know it's still in a rudimentary stage but it does a really good job"

Negative

"It was a little frustrating when the system did not understand my voice or did not react at all to voice"

Potential Future Work

Take Aways

Think carefully about purpose: communication -- analysis

Take Aways

Think carefully about purpose: communication -- analysis

Interaction provides power, innovate with it

gd 919

Take Aways

Think carefully about purpose: communication -- analysis

Interaction provides power, innovate with it

Multimodal interaction is coming...

Take Aways

Think carefully about purpose: communication -- analysis

Interaction provides power, innovate with it

Multimodal interaction is coming...

Thanks to ...

Acknowledgments

• Supported by NSF IIS-1717111, NSF IIS-1320537

• Supported by gifts from Adobe, Microsoft, Google, and Nokia

http://www.cc.gatech.edu/gvu/ii

Georgia Visualization Tech Lab