Old and New Challenges in Coloring Graphs with Geometric Representations

Bartosz Walczak

Jagiellonian University
Kraków, Poland

The 27th International Symposium on Graph Drawing and Network Visualization

Chromatic number, denoted χ : minimum number of colors in a proper coloring

What makes the chromatic number large?

Clique number, denoted ω :
 maximum size of a clique

$$
\chi \geqslant \omega
$$

Tutte, Zykov, Mycielski... 1940/50s There exist triangle-free graphs with arbitrarily large chromatic number.

Interval graphs

Interval graphs

Interval graphs

Interval graphs

Interval graphs

Interval graphs

Permutation graphs

Interval graphs
satisfy $\chi=\omega$.
Permutation graphs

satisfy $\chi=\omega$.

Interval graphs

Permutation graphs

satisfy $\chi=\omega$.

Intersection graphs: vertices - geometric objects edges - intersecting pairs of objects

A graph is perfect if it satisfies $\chi=\omega$ and so does its every induced subgraph.

Interval graphs and permutation graphs are perfect.
Chudnovsky, Robertson, Seymour, Thomas, 2006 The Strong Perfect Graph Theorem
Every imperfect graph contains an induced subgraph that is

- a cycle of odd length $\geqslant 5$, or
- the complement of a cycle of odd length $\geqslant 5$.

A graph is perfect if it satisfies $\chi=\omega$ and so does its every induced subgraph.

Interval graphs and permutation graphs are perfect.
In many natural graph classes, χ is bounded by a function of ω.
Gyárfás, 1987
Problems from the world surrounding perfect graphs
A class of graphs is χ-bounded if there is a function f such that every graph in the class satisfies $\chi \leqslant f(\omega)$.

Asplund, Grünbaum, 1960
On a coloring problem

rectangle graphs

Asplund, Grünbaum, 1960
On a coloring problem
Rectangle graphs satisfy $\chi=O\left(\omega^{2}\right)$.

How about box graphs?
Burling, 1965
On coloring problems of families of polytopes cited as:
On coloring problems of families of prototypes
There are triangle-free box graphs with arbitrarily large chromatic number.

Rectangle graphs
construction

$$
\chi=3 \omega
$$

Kostochka, 2004

upper bound
$\chi=O\left(\omega^{2}\right)$
Asplund, Grünbaum, 1960 better $\chi=O\left(\omega^{2}\right)$
Hendler, 1998

What is the truth?

Gyárfás, 1985
On the chromatic number of multiple interval graphs and overlap graphs

overlap graph

circle graph

Overlap graphs (circle graphs) are χ-bounded.

Circle graphs

upper bound

$$
\chi=O\left(4^{\omega} \omega^{2}\right)
$$

Gyárfás, 1985
$\chi=O\left(2^{\omega} \omega^{2}\right)$
Kostochka, 1988
construction
$\chi=\Theta(\omega \log \omega)$
Kostochka, 1988

$$
\chi=O\left(2^{\omega}\right)
$$

Kostochka, Kratochvíl, 1997

$$
\text { better } \chi=O\left(2^{\omega}\right)
$$

Černý, 2007

What is the truth?

Gyárfás, 1987
Problems from the world surrounding perfect graphs
Problems attributed to Erdős
Are segment graphs χ-bounded?
Are unit-length segment graphs χ-bounded?
Are complements of segment graphs χ-bounded?

Gyárfás, 1987
Problems from the world surrounding perfect graphs
Problems attributed to Erdős
Are segment graphs χ-bounded?
Are unit-length segment graphs χ-bounded?
Are complements of segment graphs χ-bounded? Yes
Larman, Matoušek, Pach, Törőcsik, 1994
Complements of segment graphs satisfy $\chi \leqslant \omega^{4}$.

The same works for disjointness graphs of x-monotone curves.

Gyárfás, 1987
Problems from the world surrounding perfect graphs
Problems attributed to Erdős
Are segment graphs χ-bounded?
Are unit-length segment graphs χ-bounded?
Are complements of segment graphs χ-bounded? Yes
Larman, Matoušek, Pach, Törőcsik, 1994
Complements of segment graphs satisfy $\chi \leqslant \omega^{4}$.
Suk, 2014
Unit-length segment graphs are χ-bounded.

Gyárfás, 1987
Problems from the world surrounding perfect graphs
Problems attributed to Erdős
Are segment graphs χ-bounded?
No
Are unit-length segment graphs χ-bounded? Yes
Are complements of segment graphs χ-bounded? Yes
Larman, Matoušek, Pach, Törőcsik, 1994
Complements of segment graphs satisfy $\chi \leqslant \omega^{4}$.
Suk, 2014
Unit-length segment graphs are χ-bounded.
Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter, W, 2014
There are triangle-free segment graphs with arbitrarily large chromatic number.

string graphs

Benzer, 1959
On the topology of the genetic fine structure Sinden, 1966
Topology of thin film RC circuits

Kratochvíl, 1991
String graphs. I. The number of critical nonstring graphs is infinite String graphs. II. Recognizing string graphs is NP-hard

Kratochvíl, Matoušek, 1991
String graphs requiring exponential representations

Pach, Tóth, 2001
Recognizing string graphs is decidable

Schaefer, Štefankovič, 2001
Decidability of string graphs

Schaefer, Sedgwick, Štefankovič, 2003
Recognizing string graphs in NP

string graphs

outerstring graphs

Kratochvíl, 1991
String graphs. I. The number of critical nonstring graphs is infinite String graphs. II. Recognizing string graphs is NP-hard

Middendorf, Pfeiffer, 1993
Weakly transitive orientations, Hasse diagrams and string graphs

- alternative proof that recognizing string graphs is NP-hard

Note added in proof
Though not stated there explicitly, their method can be used directly to prove that recognition of outerstring graphs is NP-hard as well.

Middendorf, Pfeiffer, 1993

Hasse diagrams

co-cylinder graphs

co-outerstring graphs
\supseteq for triangle-free
Sinden, 1966
Co-outerstring graphs exclude induced ordered cycles of length $\geqslant 4$.

ordered 4-cycle

its complement not realizable in an outerstring graph

Middendorf, Pfeiffer, 1993

Hasse diagrams

co-cylinder graphs

co-outerstring graphs
\supseteq for triangle-free
Nešetřil, Rödl, 1993; Brightwell, 1993
Recognition of Hasse diagrams is NP-hard.

Middendorf, Pfeiffer, 1993

Hasse diagrams

co-cylinder graphs

co-outerstring graphs

Erdős, Hajnal, 1964 shift graphs

vertices: $(a, b), 1 \leqslant a<b \leqslant m$ edges: touching intervals
$\omega=2$

Middendorf, Pfeiffer, 1993

Hasse diagrams

co-cylinder graphs

co-outerstring graphs

Erdős, Hajnal, 1964 shift graphs

vertices: $(a, b), 1 \leqslant a<b \leqslant m$ edges: touching intervals
$\omega=2 \quad \chi \geqslant\left\lceil\log _{2} m\right\rceil$

Middendorf, Pfeiffer, 1993

Hasse diagrams

co-cylinder graphs

co-outerstring graphs

Erdős, Hajnal, 1964 shift graphs

vertices: $(a, b), 1 \leqslant a<b \leqslant m$ edges: touching intervals
$\omega=2 \quad \chi=\left\lceil\log _{2} m\right\rceil$

Middendorf, Pfeiffer, 1993

Hasse diagrams

co-cylinder graphs

co-outerstring graphs

Erdős, Hajnal, 1964 shift graphs

Pach, Tardos, Tóth, 2017; Mütze, W, Wiechert Shift graphs are disjointness graphs of 1 -intersecting curves.

Are disjointness graphs of 1 -intersecting grounded curves χ-bounded?
vertices: $(a, b), 1 \leqslant a<b \leqslant m$ edges: touching intervals
$\omega=2 \quad \chi=\left\lceil\log _{2} m\right\rceil$

Rok, W, 2014
Outerstring graphs are χ-bounded
builds on earlier work:
McGuinness, 1996 and 2000
Suk, 2014
Lasoń, Micek, Pawlik, W, 2014

Sinden, 1966
Outerstring graphs exclude complements of induced ordered cycles of length $\geqslant 4$.

Tomon, unpublished
not realizable in an outerstring graph
Ordered graphs excluding a fixed non-crossing ordered matching are χ-bounded.
Are ordered graphs excluding induced o o o χ-bounded?

intersection graphs: not χ-bounded disjointness graphs: not χ-bounded

intersection graphs: χ-bounded Rok, W, 2014
disjointness graphs: not χ-bounded Middendorf, Pfeiffer, 1993

intersection graphs: not χ-bounded Pawlik et al., 2014
disjointness graphs: χ-bounded Larman et al., 1994

intersection graphs: χ-bounded disjointness graphs: χ-bounded

Pach, Tomon, 2019
$\chi \leqslant\binom{\omega+1}{2}$ tight!

$\Omega(\log \log n)$ for $\omega=2$
Pawlik et al. 2013
$\Omega_{\omega}\left((\log \log n)^{\omega-1}\right)$
Krawczyk, W 2017
$O_{\omega}\left((\log \log n)^{\omega-1}\right)$ Krawczyk, W 2017 $O(\log \log n)$ for $\omega=2$ W 2019
$\Theta(\sqrt{n / \log n})$ for general triangle-free graphs
Ajtai, Komlós, Szemerédi, 1980; Kim, 1995
Are there triangle-free co-string graphs with $\chi=\Omega\left(n^{\varepsilon}\right)$?

A graph drawn in the plane is k-quasi-planar if no k of its edges pairwise cross.

not 3-quasi-planar

A graph drawn in the plane is k-quasi-planar if no k of its edges pairwise cross.
geometric graphs convex geometric graphs

convex bipartite geometric graphs

How many edges can an n-vertex k-quasi-planar graph have?

A graph drawn in the plane is k-quasi-planar if no k of its edges pairwise cross.
geometric graphs

segment graph
$\chi=O_{k}(\log n)$
convex geometric graphs

circle graph
$\chi=O_{k}(1)$
convex bipartite geometric graphs

permutation graph

$$
\chi \leqslant k-1
$$

A graph drawn in the plane is k-quasi-planar $\Rightarrow \omega \leqslant k-1$ if no k of its edges pairwise cross.

segment graph
$\chi=O_{k}(\log n)$
convex geometric graphs

circle graph
$\chi=O_{k}(1)$
convex bipartite geometric graphs

permutation graph

$$
\chi \leqslant k-1
$$

A graph drawn in the plane is k-quasi-planar if no k of its edges pairwise cross.
geometric graphs convex geometric graphs

$\chi=O_{k}(\log n)$
$O(n)$ edges
of one color

$\chi=O_{k}(1)$
$O(n)$ edges
of one color
convex bipartite geometric graphs

$$
\begin{gathered}
\chi \leqslant k-1 \\
\leqslant n-1 \text { edges } \\
\text { of one color }
\end{gathered}
$$

A graph drawn in the plane is k-quasi-planar if no k of its edges pairwise cross.

$O_{k}(n \log n)$ edges $\chi=O_{k}(\log n)$
$O(n)$ edges
of one color
convex geometric graphs

$O_{k}(n)$ edges
$\chi=O_{k}(1)$
$O(n)$ edges
of one color
convex bipartite geometric graphs

$$
\begin{gathered}
\leqslant(k-1)(n-1) \text { edges } \\
\chi \leqslant k-1 \\
\leqslant n-1 \text { edges } \\
\text { of one color }
\end{gathered}
$$

A graph drawn in the plane is k-quasi-planar if no k of its edges pairwise cross.

$O_{k}(n \log n)$ edges Valtr, 1997
topological graphs $n \log ^{O(k)} n$ edges
Fox, Pach, 2012
convex geometric graphs

$O_{k}(n)$ edges
Capoyleas, Pach, 1992
1-intersecting topological graphs $O_{k}(n \log n)$ edges Suk, W, 2015
convex bipartite geometric graphs

$\leqslant(k-1)(n-1)$ edges
k-intersecting topological graphs $O_{k}(n \log n)$ edges Rok, W, 2017

A graph drawn in the plane is k-quasi-planar if no k of its edges pairwise cross.
geometric graphs convex geometric graphs

$O_{k}(n \log n)$ edges Valtr, 1997

$O_{k}(n)$ edges
Capoyleas, Pach, 1992
convex bipartite geometric graphs

$\leqslant(k-1)(n-1)$ edges

Conjecture - Pach, Shahrokhi, Szegedy, 1996
For every k, k-quasi-planar graphs have linearly many edges.
Ackerman, 2009: True up to $k=4$.

Circle graphs

upper bound

$$
\chi=O\left(4^{\omega} \omega^{2}\right)
$$

Gyárfás, 1985

$$
\chi=O\left(2^{\omega} \omega^{2}\right)
$$

Kostochka, 1988
construction

$$
\chi=\Theta(\omega \log \omega)
$$

Kostochka, 1988

$$
\chi=O\left(2^{\omega}\right)
$$

Kostochka, Kratochvíl, 1997

$$
\text { better } \chi=O\left(2^{\omega}\right)
$$

Černý, 2007
Davies, McCarty, 2019+
Circle graphs are quadratically χ-bounded

Divide-and-conquer?

Divide-and-conquer?

permutation graph
a group of ω colors

Divide-and-conquer?

permutation graphs
a group of ω colors

Divide-and-conquer?

permutation graphs
a group of ω colors

Divide-and-conquer?

Divide-and-conquer?

Idea: Reuse colors in a smart way

max \# color groups:

$$
\omega+2 m+1
$$

max \# conflicting parents:

$$
\omega+m+1
$$

m to be determined later

current segment

max \# color groups:

$$
\omega+2 m+1
$$

max \# conflicting parents:

$$
\omega+m+1
$$

m to be determined later

Easy case:
$\leqslant \omega+m$ conflicting parents

max \# color groups:

$$
\omega+2 m+1
$$

max \# conflicting parents:

$$
\omega+m+1
$$

m to be determined later

Easy case:
$\leqslant \omega+m$ conflicting parents

max \# color groups:

$$
\omega+2 m+1
$$

max \# conflicting parents:

$$
\omega+m+1
$$

m to be determined later

Difficult case:
$\omega+m+1$ conflicting parents

max \# color groups:

$$
\omega+2 m+1
$$

max \# conflicting parents:

$$
\omega+m+1
$$

m to be determined later

Difficult case:
$\omega+m+1$ conflicting parents

max \# color groups:

$$
\omega+2 m+1
$$

max \# conflicting parents:

$$
\omega+m+1
$$

m to be determined later

$\omega+1$ conflicting parents

max \# color groups:

$$
\omega+2 m+1
$$

max \# conflicting parents:

$$
\omega+m+1
$$

m to be determined later

$$
\omega+m+1 \text { vertices }
$$

$$
q+1 \text { vertices }
$$

convex bipartite ($\omega+1$)-quasi-planar graph on $q+\omega+m+2$ vertices

$\omega+1$ conflicting parents

max \# color groups:

$$
\omega+2 m+1
$$

max \# conflicting parents:

$$
\omega+m+1
$$

m to be determined later
$\omega+m+1$ vertices

$q+1$ vertices
convex bipartite $(\omega+1)$-quasi-planar graph on $q+\omega+m+2$ vertices $q \omega+q=q(\omega+1) \leqslant \#$ edges $\leqslant(q+\omega+m+1) \omega=q \omega+\omega^{2}+m \omega+\omega$

max \# color groups:

$$
\omega+2 m+1
$$

max \# conflicting parents:

$$
\omega+m+1
$$

m to be determined later

$$
q \leqslant \omega^{2}+m \omega+\omega
$$

$$
q \omega+q=q(\omega+1) \leqslant \# \text { edges } \leqslant(q+\omega+m+1) \omega=q \omega+\omega^{2}+m \omega+\omega
$$

max \# color groups:

$$
\omega+2 m+1
$$

max \# conflicting parents:

$$
\omega+m+1
$$

m to be determined later

$$
q \leqslant \omega^{2}+m \omega+\omega
$$

$\omega+1$ conflicting parents
max \# color groups:

$$
\omega+2 m+1
$$

max \# conflicting parents:

$$
\omega+m+1
$$

m to be determined later

$$
\begin{aligned}
& q \leqslant \omega^{2}+m \omega+\omega \\
& m=O(\log \omega)
\end{aligned}
$$

$\omega+m+1$ conflicting parents

q nodes
height $1+\left\lfloor\log _{2} q\right\rfloor$

$$
\leqslant 1+\left\lfloor\log _{2}\left(\omega^{2}+m \omega+1\right)\right\rfloor=m
$$

$\omega+1$ conflicting parents
max \# color groups:

$$
\omega+2 m+1
$$

max \# conflicting parents:

$$
\omega+m+1
$$

m to be determined later

$$
\begin{aligned}
& q \leqslant \omega^{2}+m \omega+\omega \\
& m=O(\log \omega)
\end{aligned}
$$

$\omega+m+1$ conflicting parents

height $1+\left\lfloor\log _{2} q\right\rfloor$

$$
\leqslant 1+\left\lfloor\log _{2}\left(\omega^{2}+m \omega+1\right)\right\rfloor=m
$$

m color groups available

$\omega+1$ conflicting parents
max \# color groups:

$$
\omega+2 m+1
$$

max \# conflicting parents:

$$
\omega+m+1
$$

m to be determined later

$$
\begin{aligned}
& q \leqslant \omega^{2}+m \omega+\omega \\
& m=O(\log \omega)
\end{aligned}
$$

$\#$ colors $=(\#$ color groups $) \cdot \omega \leqslant \omega^{2}+2 m \omega+\omega=\omega^{2}+O(\omega \log \omega)$

Circle graphs

upper bound

$$
\chi=O\left(4^{\omega} \omega^{2}\right)
$$

Gyárfás, 1985

$$
\chi=O\left(2^{\omega} \omega^{2}\right)
$$

Kostochka, 1988
construction

$$
\chi=\Theta(\omega \log \omega)
$$

Kostochka, 1988

$$
\chi=O\left(2^{\omega}\right)
$$

Kostochka, Kratochvíl, 1997
better $\chi=O\left(2^{\omega}\right)$

Černý, 2007

$$
\chi=O\left(\omega^{2}\right)
$$

Davies, McCarty, 2019+
What is the truth?

Davies, Krawczyk, McCarty, W, 2019+
Grounded L-graphs are polynomially χ-bounded.

χ-bounded
McGuinness 1996

permutation graph

?

Are grounded segment graphs polynomially χ-bounded? Are outerstring graphs polynomially χ-bounded?

Esperet, 2017

Is every χ-bounded class of graphs polynomially χ-bounded?

circle graphs \subset grounded \subset grd. segment
$\subseteq \underset{\text { L-graphs }}{\subseteq}$
$\Omega(\omega \log \omega)$
Kostochka 1988
$\begin{array}{cccc}O\left(\omega^{2}\right) & O\left(\omega^{4}\right) & \chi \text {-bounded } & \chi \text {-bounded } \\ \text { Davies, McCarty } & \text { Davies, Krawczyk, } & \text { Suk 2014 } & \text { Rok, W } 2014 \\ 2019 & \text { McCarty, W 2019+ } & & \end{array}$

polygon visibility graph

Kára, Pór, Wood, 2005 Are polygon visibility graphs χ-bounded?

Davies, Krawczyk, McCarty, W, 2019+ Yes, they are.

Kára, Pór, Wood, 2005 Are polygon visibility graphs χ-bounded?

Davies, Krawczyk, McCarty, W, 2019+ Yes, they are.

all vertices visible from a common boundary segment

Kára, Pór, Wood, 2005 Are polygon visibility graphs χ-bounded?

Davies, Krawczyk, McCarty, W, 2019+ Yes, they are.

Kára, Pór, Wood, 2005 Are polygon visibility graphs χ-bounded?

Davies, Krawczyk, McCarty, W, 2019+ Yes, they are.

Davies, Krawczyk, McCarty, W, 2019+
Ordered graphs with χ-bounded.
Are these graphs (or polygon visibility graphs) polynomially χ-bounded?

Rectangle graphs

construction

$$
\chi=3 \omega
$$

Kostochka, 2004
upper bound

$$
\chi=O\left(\omega^{2}\right)
$$

Asplund, Grünbaum, 1960 better $\chi=O\left(\omega^{2}\right)$ Hendler, 1998

Chalermsook, W, 2019+
Rectangle graphs satisfy $\chi=O(\omega \log \omega)$.

