Mixed Linear Layouts:
 Complexity, Heuristics, and Experiments

Philipp de Col, Fabian Klute, and Martin Nöllenburg Graph Drawing 2019 • September 19, 2019

Mixed Linear Layouts I

Stack

Queue

Mixed Linear Layouts I

Stack No crossings!

Queue

Mixed Linear Layouts I
Stack No crossings!

Queue No proper nestings!

What Kind of Questions

Given a graph, does this graph admit a s-stack, q-queue layout?

What Kind of Questions

Given a graph, does this graph admit a s-stack, q-queue layout?

Given a graph produce a s-stack, q-queue layout - but allow a few violations of the definitions!

What Kind of Questions

Given a graph, does this graph admit a s-stack, q-queue layout?

Given a graph produce a s-stack, q-queue layout - but allow a few violations of the definitions!

Given a graph with fixed vertex order, assign the edges to pages.

Previous Work

The two most relevant papers for us
Heath and Rosenberg 1992
Introduced the mixed layout
Conjecture that every planar graph has 1 -stack,1-queue layout

Previous Work

The two most relevant papers for us
Heath and Rosenberg 1992
Introduced the mixed layout
Conjecture that every planar graph has 1 -stack,1-queue layout
Pupyrev 2017
Disproved the above conjecture
Conjecture: Every planar bipartite graph fits on 1-stack,1-queue

Previous Work

The two most relevant papers for us
Heath and Rosenberg 1992
Introduced the mixed layout
Conjecture that every planar graph has 1 -stack,1-queue layout
Pupyrev 2017
Disproved the above conjecture
Conjecture: Every planar bipartite graph fits on 1-stack,1-queue

Needed fact
Bernhart and Kainen 1979 + Wigderson 1982
Testing if G admits 2-stack embeding is NP-complete

Our Results

First taylored heuristic for assigning edges to stack and queue pages

Our Results

First taylored heuristic for assigning edges to stack and queue pages

Given a graph G, testing if G has a 2-stack, 1-queue layout is NP-complete

Our Results

First taylored heuristic for assigning edges to stack and queue pages

Given a graph G, testing if G has a 2-stack, 1-queue layout is NP-complete

If it is NP-hard to test for a given graph G with fixed vertex order if G admits a s-stack, q-queue layout, it is NP-hard to test if G admits a $s+1$-stack, q-queue or s-stack, $q+1$-queue layout.

Our Results

First taylored heuristic for assigning edges to stack and queue pages

Given a graph G, testing if G has a 2-stack, 1-queue layout is NP-complete

If it is NP-hard to test for a given graph G with fixed vertex order if G admits a s-stack, q-queue layout, it is NP-hard to test if G admits a $s+1$-stack, q-queue or s-stack, $q+1$-queue layout.
$" \Rightarrow$ " Assigning edges to stack and queue pages does not get easier by adding pages

Our Results

First taylored heuristic for assigning edges to stack and queue
pages

Given a graph G, testing if G has a 2-stack, 1-queue layout is NP-complete

If it is NP-hard to test for a given graph G with fixed vertex order if G admits a s-stack, q-queue layout, it is NP-hard to test if G admits a $s+1$-stack, q-queue or s-stack, $q+1$-queue layout.
$" \Rightarrow$ " Assigning edges to stack and queue pages does not get easier by adding pages

Mixed Linear Layouts II

Stack No crossings!

Length

Queue No proper nestings!

Mixed Linear Layouts II

Stack No crossings!

Length

Queue No proper nestings!

Mixed Linear Layouts II
Stack No crossings!

Queue No proper nestings!

Mixed Linear Layouts II
Stack No crossings!

Queue No proper nestings!

Mixed Linear Layouts II
Stack \&eid crossings!

Queue fèN proper nestings!

Edge to Page Assignment Algorithm

Input: A graph G and a linear order of its vertices
Output: 1-stack, 1-queue layout with few crossings in the stack and few proper nestings in the queue page

Edge to Page Assignment Algorithm
Input: A graph G and a linear order of its vertices
Output: 1-stack, 1-queue layout with few crossings in the stack and few proper nestings in the queue page
We maintain a stack \mathcal{S} and a queue \mathcal{Q} of edges
For each edge store two counter:

- Crossing counter $c(e)$
- Nesting counter $n(e)$

Edge to Page Assignment Algorithm
Input: A graph G and a linear order of its vertices
Output: 1-stack, 1-queue layout with few crossings in the stack and few proper nestings in the queue page
We maintain a stack \mathcal{S} and a queue \mathcal{Q} of edges
For each edge store two counter:

- Crossing counter $c(e)$
- Nesting counter $n(e)$

Encountering start of an edge e

Edges are considered sorted by length

Edge to Page Assignment Algorithm
Input: A graph G and a linear order of its vertices
Output: 1-stack, 1-queue layout with few crossings in the stack and few proper nestings in the queue page
We maintain a stack \mathcal{S} and a queue \mathcal{Q} of edges
For each edge store two counter:

- Crossing counter $c(e)$
- Nesting counter $n(e)$

Encountering end of an edge e

Consider how many edges are above e in

Edge to Page Assignment Algorithm
Input: A graph G and a linear order of its vertices
Output: 1-stack, 1-queue layout with few crossings in the stack and few proper nestings in the queue page
We maintain a stack \mathcal{S} and a queue \mathcal{Q} of edges
For each edge store two counter:

- Crossing counter $c(e)$
- Nesting counter $n(e)$

Encountering end of an edge e

Consider how many edges are above e in

Add e to stack if $c(e)+0.5 s_{e} \leq n(e)+0.5 q_{e}$ Increase $c(f)$ and $n(f)$ for all edges f above e in $\mathcal{S} / \mathcal{Q}$

Experimental Results - Random Graphs

Fully random graphs

|edges $|=6|$ vertices \mid

Experimental Results - Random Graphs

Fully random graphs

Result

- We produce the best results for the majority of instances
- Difference is narrow

Experimental Results - Planar Graphs

Two more general cases

Experimental Results - Planar Graphs
Two more general cases

Planar Bipartite
Planar 2- and 3-trees

Planar 2-trees

Planar 3-trees

Experimental Results - Planar Graphs

Planar 2- and 3-trees

Our Results

First taylored heuristic for assigning edges to stack and queue
pages

Given a graph G, testing if G has a 2-stack, 1-queue layout is NP-complete

If it is NP-hard to test for a given graph G with fixed vertex order if G admits a s-stack, q-queue layout, it is NP-hard to test if G admits a $s+1$-stack, q-queue or s-stack, $q+1$-queue layout. $" \Rightarrow$ " Assigning edges to stack and queue pages does not get easier by adding pages

Our Results

First taylored heuristic for assigning edges to stack and queue pages

Given a graph G, testing if G has a 2-stack, 1-queue layout is NP-complete

If it is NP-hard to test for a given graph G with fixed vertex order if G admits a s-stack, q-queue layout, it is NP-hard to test if G admits a $s+1$-stack, q-queue or s-stack, $q+1$-queue layout. $" \Rightarrow$ " Assigning edges to stack and queue pages does not get easier by adding pages

Testing 2-stack, 1-queue is NP- complete I

Reduction from testing 2 -stack

Testing 2-stack, 1-queue is NP- complete I

 Reduction from testing 2 -stack- K_{8}, largest complete graph that has 2-stack, 1-queue layout

Testing 2-stack, 1-queue is NP- complete I
Reduction from testing 2 -stack

- K_{8}, largest complete graph that has 2-stack, 1-queue layout

Testing 2-stack, 1-queue is NP- complete I
Reduction from testing 2 -stack

- K_{8}, largest complete graph that has 2-stack, 1-queue layout
- Form Double K_{8} by identifying two vertices + add edge $w z$

Testing 2-stack, 1-queue is NP- complete I
Reduction from testing 2 -stack

- K_{8}, largest complete graph that has 2-stack, 1-queue layout
- Form Double K_{8} by identifying two vertices + add edge $w z$
- Double K_{8} has very limited interaction with rest of graph

Testing 2-stack, 1-queue is NP- complete II

Testing 2-stack, 1-queue is NP- complete II

Testing 2-stack, 1-queue is NP- complete II

Testing 2-stack, 1-queue is NP- complete II

Lemma: u must be between w_{1} and w_{2} for any vertex-ordering of the above graph

Testing 2-stack, 1-queue is NP- complete III
Given graph G, task find 2-stack layout of G

Lemma: u must be between w_{1} and w_{2} for any vertex-ordering of the above graph

Testing 2-stack, 1-queue is NP- complete III
Given graph G, task find 2-stack layout of G
\rightarrow Simply identify any vertex of G with u

Lemma: u must be between w_{1} and w_{2} for any vertex-ordering of the above graph

Testing 2-stack, 1-queue is NP- complete III
Given graph G, task find 2-stack layout of G
\rightarrow Simply identify any vertex of G with u

Clearly if G has 2-stack layout we find 2-stack, 1-queue layout

Testing 2-stack, 1-queue is NP- complete III
Given graph G, task find 2-stack layout of G
\rightarrow Simply identify any vertex of G with u

Clearly if G has 2-stack layout we find 2-stack, 1-queue layout For other direction:
Previous lemma holds for the neighbors of u
\Rightarrow Induction gives the result

Conclusions

First taylored heuristic for page assignment in mixed layouts
Two new complexity results regarding mixed layouts

Conclusions

First taylored heuristic for page assignment in mixed layouts
Two new complexity results regarding mixed layouts
\rightarrow Open: complexity of 1-stack, 1-queue layouts?

Conclusions

First taylored heuristic for page assignment in mixed layouts
Two new complexity results regarding mixed layouts
\rightarrow Open: complexity of 1 -stack, 1 -queue layouts?
Open: Does every planar bipartite graph admit a 1 -stack, 1 -queue layout? [Pupyrev 2017]

