Homotopy height, grid-major height and graph-drawing height

Therese Biedl
Erin Chambers
David Eppstein
Arnaud De Mesmay
Tim Ophelders

Problem statement

Given a planar graph and a height h, is there a planar straight line drawing of height h ?

Problem statement

Given a planar graph and a height h, is there a planar straight line drawing of height h ?

Applications
Drawing planar graphs on narrow strips of paper

Problem statement

Given a planar graph and a height h, is there a planar straight line drawing of height h ?

Applications
Drawing planar graphs on narrow strips of paper

Measuring similarity between curves on surfaces

Assumptions on our graphs
All our graphs are planar

Assumptions on our graphs
All our graphs are planar
All faces (including the outer face) are triangular

Assumptions on our graphs
All our graphs are planar
All faces (including the outer face) are triangular
\Rightarrow choice of outer face fully determines rotation system

Assumptions on our graphs
All our graphs are planar
All faces (including the outer face) are triangular
\Rightarrow choice of outer face fully determines rotation system
Models a triangulated sphere

Homotopy height

How short of a curve can sweep a topological sphere?

Homotopy height

How short of a curve can sweep a topological sphere?

Homotopy height

How short of a curve can sweep a topological sphere?

Homotopy height

How short of a curve can sweep a topological sphere?

Homotopy height

How short of a curve can sweep a topological sphere?
Variant in this talk: curve fixed to arbitrary basepoint

Homotopy height

How short of a curve can sweep a topological sphere?
Variant in this talk: curve fixed to arbitrary basepoint

Homotopy height

How short of a curve can sweep a topological sphere?
Variant in this talk: curve fixed to arbitrary basepoint

Homotopy height

How short of a curve can sweep a topological sphere?
Variant in this talk: curve fixed to arbitrary basepoint

Homotopy height

How short of a curve can sweep a topological sphere?
Variant in this talk: curve fixed to arbitrary basepoint

Homotopy height

How short of a curve can sweep a topological sphere?
Variant in this talk: curve fixed to arbitrary basepoint

Homotopy height

How short of a curve can sweep a topological sphere? Variant in this talk: curve fixed to arbitrary basepoint Homotopy height $=\inf _{\text {basepoint }} \inf _{\text {sweep }} \sup _{t} \|$ sweep $(t) \|$

Homotopy height

How short of a curve can sweep a topological sphere? Variant in this talk: curve fixed to arbitrary basepoint Homotopy height $=\inf _{\text {basepoint }} \inf _{\text {sweep }} \sup _{t} \|$ sweep $(t) \|$

Discretizing Homotopy height

Triangulate surface to approximate metric

Discretizing Homotopy height

Triangulate surface to approximate metric
Basepoint $=$ face of triangulation

Discretizing Homotopy height

Triangulate surface to approximate metric
Basepoint $=$ face of triangulation $=$ outer face

Discretizing Homotopy height

Triangulate surface to approximate metric
Basepoint $=$ face of triangulation $=$ outer face

Discretizing Homotopy height

Triangulate surface to approximate metric
Basepoint $=$ face of triangulation $=$ outer face All curves γ_{t} of sweep start and end on outer face

Discretizing Homotopy height

Triangulate surface to approximate metric
Basepoint $=$ face of triangulation $=$ outer face All curves γ_{t} of sweep start and end on outer face
First and last curves of sweep consist of single (distinct) vertex

Discretizing Homotopy height

Triangulate surface to approximate metric
Basepoint $=$ face of triangulation $=$ outer face All curves γ_{t} of sweep start and end on outer face
First and last curves of sweep consist of single (distinct) vertex Consecutive curves differ by a (simple) homotopy move

Simple homotopy moves

Any curve in simple sweep uses any vertex \leq once

Simple homotopy moves

Any curve in simple sweep uses any vertex \leq once

Boundary-move

Boundary-edge-slide

Simple homotopy moves

Any curve in simple sweep uses any vertex \leq once

Face-flip
(not outer face)

Boundary-move

Boundary-edge-slide

Homotopy moves (nonsimple)

Vertices can be reused

Homotopy moves (nonsimple)

Vertices can be reused

Simple homotopy moves + edge spikes:

Homotopy moves (nonsimple)

Vertices can be reused
Simple homotopy moves + edge spikes:

Sweep must flip (or slide) across each face 'from-left-to-right' once more than 'from-right-to-left'

Grid-major heightw!
$W \times H$ gridpoints $\{1, \ldots, W\} \times\{1, \ldots, H\}$

Grid-major heightw
$W \times H$ gridpoints $\{1, \ldots, W\} \times\{1, \ldots, H\}$

W×H grid

graph on gridpoints, edges between points at distance 1

Grid-major heightw!
$W \times H$ gridpoints $\{1, \ldots, W\} \times\{1, \ldots, H\}$

WxH grid
 graph on gridpoints, edges between points at distance 1

Grid-major height (of a planar graph G) minimum h s.t. G is a minor of $W \times h$ grid

Grid-major height N !
W×H gridpoints $\{1, \ldots, W\} \times\{1, \ldots, H\}$

W×H grid graph on gridpoints, edges between points at distance 1

Grid-major height (of a planar graph G) minimum h s.t. G is a minor of $W \times h$ grid

Minor (of graph H)
graph obtained from H by
contracting edges removing edges/vertices

Grid-major height N !

W×H gridpoints $\{1, \ldots, W\} \times\{1, \ldots, H\}$

W×H grid

graph on gridpoints, edges between points at distance 1
Grid-major height (of a planar graph G) minimum h s.t. G is a minor of $W \times h$ grid

Minor (of graph H)
graph obtained from H by contracting edges removing edges/vertices

Simple grid-major height each label in a column appears consecutively

Some graph parameters...

(Simple) homotopy height
(Simple) grid-major height
(Simple) contact representation height
Visibility representation height
Straight-line drawing height
Pathwidth
Outerplanarity

Contact representation
each gridpoint labeled by a vertex of G

Contact representation

each gridpoint labeled by a vertex of G
each label forms connected subgraph two labels adjacent if and only if edge in G

Contact representation

each gridpoint labeled by a vertex of G
each label forms connected subgraph two labels adjacent if and only if edge in G

Simple contact representation
each label appears consecutively in each column

Contact representation

each gridpoint labeled by a vertex of G
each label forms connected subgraph two labels adjacent if and only if edge in G

Simple contact representation

each label appears consecutively in each column

Contact representation

each gridpoint labeled by a vertex of G
each label forms connected subgraph two labels adjacent if and only if edge in G

Simple contact representation
each label appears consecutively in each column
(Simple) contact representation height $\min h$ s.t. $W \times h$ grid has
(simple) contact representation

Flat visibility representation
each vertex corresponds to a horizontal bar

Flat visibility representation
each vertex corresponds to a horizontal bar for each edge there is a line of visibility
(horizontal or vertical) bars and lines of visibility do not cross

Flat visibility representation
each vertex corresponds to a horizontal bar for each edge there is a line of visibility
(horizontal or vertical)
bars and lines of visibility do not cross

Visibility representation height

 $\min h$ s.t. $W \times h$ grid has flat visibility representation

Flat visibility representation
each vertex corresponds to a horizontal bar for each edge there is a line of visibility
(horizontal or vertical)
bars and lines of visibility do not cross we allow additional visibilities (without edge in G)
Visibility representation height
$\min h$ s.t. $W \times h$ grid has flat visibility representation

Straight-line height

 $\min h$ with planar straight line drawing that has all vertices on $W \times h$ gridpoints

Straight-line height

$\min h$ with planar straight line drawing that has all vertices on $W \times h$ gridpoints

Outerplanarity

Outerplanarity (of a planar embedding) number of steps needed to remove all vertices each step: remove vertices of outer face

Outerplanarity

Outerplanarity (of a planar embedding) number of steps needed to remove all vertices each step: remove vertices of outer face

Outerplanarity (of a planar graph) minimum outerplanarity over all embeddings

Pathwidth

Path decomposition

Form groups of vertices and put groups on a path
Each vertex belongs to a subpath of groups
For any edge, endpoints lie in a common group

Pathwidth

Path decomposition

Form groups of vertices and put groups on a path
Each vertex belongs to a subpath of groups
For any edge, endpoints lie in a common group

Pathwidth

Minimum largest group size -1 over all decompositions

Relations between graph parameters...

(Simple) homotopy height
(Simple) grid-major height
(Simple) contact representation height
Visibility representation height
Straight-line drawing height
Pathwidth
Outerplanarity

Bounds

Every contact representation is a grid-major representation

Bounds

Every contact representation is a grid-major representation
Reverse is not necessarily true:
Grid-major repr. can have unwanted contacts and empty spots

Bounds

Every contact representation is a grid-major representation
Reverse is not necessarily true:
Grid-major repr. can have unwanted contacts and empty spots

Bounds

Every contact representation is a grid-major representation
Reverse is not necessarily true:
Grid-major repr. can have unwanted contacts and empty spots
Our assumptions on the graph
\Rightarrow empty space can be filled without unwanted contacts

Bounds

Every contact representation is a grid-major representation
Reverse is not necessarily true:
Grid-major repr. can have unwanted contacts and empty spots
Our assumptions on the graph
\Rightarrow empty space can be filled without unwanted contacts
contact representation height $=$ grid-major height

Bounds

Every contact representation is a grid-major representation
Reverse is not necessarily true:
Grid-major repr. can have unwanted contacts and empty spots
Our assumptions on the graph
\Rightarrow empty space can be filled without unwanted contacts
contact representation height $=$ grid-major height
simple contact representation height $=$ simple grid-major height

Bounds

Every contact representation is a grid-major representation
Reverse is not necessarily true:
Grid-major repr. can have unwanted contacts and empty spots
Our assumptions on the graph
\Rightarrow empty space can be filled without unwanted contacts
contact representation height $=$ grid-major height
simple contact representation height $=$ simple grid-major height
Requiring that regions are x-monotone can only increase height grid-major height \leq simple grid-major height

Bounds

Every flat visibility representation can be turned into a simple grid-major representation

Bounds

Every flat visibility representation can be turned into a simple grid-major representation
simple grid-major height \leq visibility representation height

Bounds

Every flat visibility representation can be turned into a simple grid-major representation
simple grid-major height \leq visibility representation height
Previously shown [Biedl14]:
visibility representation height $=$ straight-line drawing height

Bounds

Pathwidth of $W \times h$ grid minor \leq pathwidth of $W \times h$ grid $\leq h$

Bounds

Pathwidth of $W \times h$ grid minor \leq pathwidth of $W \times h$ grid $\leq h$ pathwidth \leq grid-major height

Bounds

Pathwidth of $W \times h$ grid minor \leq pathwidth of $W \times h$ grid $\leq h$ pathwidth \leq grid-major height
Outerplanarity of $W \times h$ grid minor \leq that of $W \times h$ grid $\leq\lceil h / 2\rceil$
2 outerplanarity $-1 \leq$ grid-major height

Overview of bounds

2 outerplanarity -1 and pathwidth

$$
\begin{gathered}
\quad \leq \\
\text { grid-major height } \\
=
\end{gathered}
$$

contact representation height

$$
\stackrel{\leq}{\leq}
$$

simple contact representation height

$$
\leq
$$

visibility representation height
straight-line drawing height

Overview of bounds

2 outerplanarity -1 and pathwidth
\qquad
grid-major height
$=$
contact representation height $=$ homotopy height
$\leq \quad \leq$
simple contact representation height $=$ simple homotopy height
\qquad
visibility representation height
straight-line drawing height

Simple grid-major height $=$ simple homotopy height

Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards

Simple grid-major height $=$ simple homotopy height

 Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwardsSimple homotopy height \geq simple grid-major height:

Simple grid-major height $=$ simple homotopy height

 Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwardsSimple homotopy height \geq simple grid-major height:

Simple grid-major height $=$ simple homotopy height

 Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwardsSimple homotopy height \geq simple grid-major height:

Simple grid-major height $=$ simple homotopy height

 Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwardsSimple homotopy height \geq simple grid-major height:

Simple grid-major height $=$ simple homotopy height

 Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwardsSimple homotopy height \geq simple grid-major height:

Simple grid-major height $=$ simple homotopy height

 Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwardsSimple homotopy height \geq simple grid-major height:

Simple grid-major height $=$ simple homotopy height

 Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwardsSimple homotopy height \geq simple grid-major height:

Simple grid-major height $=$ simple homotopy height

Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards
Simple homotopy height \geq simple grid-major height:

Simple grid-major height $=$ simple homotopy height

 Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwardsSimple homotopy height \geq simple grid-major height:

Simple grid-major height $=$ simple homotopy height

Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards

Simple homotopy height \leq simple grid-major height:

Simple grid-major height $=$ simple homotopy height

Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards

Simple homotopy height \leq simple grid-major height:
Take contact representation wlog 3 colors on boundary

Simple grid-major height $=$ simple homotopy height
Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards

Simple homotopy height \leq simple grid-major height: Take contact representation wlog 3 colors on boundary No four polygons meet at a point

Simple grid-major height $=$ simple homotopy height
Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards

Simple homotopy height \leq simple grid-major height: Take contact representation wlog 3 colors on boundary No four polygons meet at a point x

Remove interior vertical junctions

$$
\square \rightarrow \square \text { or } \square
$$

Simple grid-major height $=$ simple homotopy height
Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards

Simple homotopy height \leq simple grid-major height: Take contact representation wlog 3 colors on boundary No four polygons meet at a point x

Remove interior vertical junctions

$$
\square \rightarrow \square \text { or } \square
$$

Simple grid-major height $=$ simple homotopy height
Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards

Simple homotopy height \leq simple grid-major height: Take contact representation wlog 3 colors on boundary No four polygons meet at a point

Remove interior vertical junctions

Make x-coordinates distinct

Simple grid-major height $=$ simple homotopy height
Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards

Simple homotopy height \leq simple grid-major height: Take contact representation wlog 3 colors on boundary No four polygons meet at a point

Remove interior vertical junctions

Make x-coordinates distinct

Simple grid-major height $=$ simple homotopy height
Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards

Simple homotopy height \leq simple grid-major height: Take contact representation wlog 3 colors on boundary No four polygons meet at a point

Remove interior vertical junctions

$$
\square \rightarrow \square
$$

Make x-coordinates distinct
Make left and right boundary single (but distinct) color

Simple grid-major height $=$ simple homotopy height

Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards
Simple homotopy height \leq simple grid-major height: Extract sweep

Simple grid-major height $=$ simple homotopy height

Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards
Simple homotopy height \leq simple grid-major height: Extract sweep

Simple grid-major height $=$ simple homotopy height

Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards
Simple homotopy height \leq simple grid-major height: Extract sweep

Simple grid-major height $=$ simple homotopy height

Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards
Simple homotopy height \leq simple grid-major height: Extract sweep

Simple grid-major height $=$ simple homotopy height

Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards
Simple homotopy height \leq simple grid-major height: Extract sweep

Simple grid-major height $=$ simple homotopy height

Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards
Simple homotopy height \leq simple grid-major height: Extract sweep

Simple grid-major height $=$ simple homotopy height Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards
Simple homotopy height \leq simple grid-major height: Extract sweep

Simple grid-major height $=$ simple homotopy height
Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards
Simple homotopy height \leq simple grid-major height: Extract sweep

Simple grid-major height $=$ simple homotopy height
Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards
Simple homotopy height \leq simple grid-major height: Extract sweep

Simple grid-major height $=$ simple homotopy height
Sweep can be assumed monotone based on [CMO et al. 17] curve does not sweep backwards

Simple homotopy height \leq simple grid-major height: Extract sweep

Similarly, grid-major height $=$ homotopy height

Overview of bounds

2 outerplanarity -1 and pathwidth
\qquad
grid-major height
$=$
contact representation height $=$ homotopy height
$\leq \quad \leq$
simple contact representation height $=$ simple homotopy height
\qquad
visibility representation height
straight-line drawing height

Overview of bounds

2 outerplanarity -1 and pathwidth
\qquad
grid-major height
contact representation height $=$ homotopy height
$\leq \quad \leq$
simple contact representation height $=$ simple homotopy height
\qquad
visibility representation height

$$
=
$$

inequalities are strict
straight-line drawing height

Overview of bounds

2 outerplanarity -1 and pathwidth
\qquad
grid-major height
contact representation height $=$ homotopy height
$\leq \quad \leq$
simple contact representation height $=$ simple homotopy height
\qquad
visibility representation height
straight-line drawing height
inequalities are strict
gaps are nonconstant

Pathwidth \leq grid-major height

Pathwidth $=3$

Pathwidth \leq grid-major height
Pathwidth $=3$
Grid-major height ≥ 2 outerplanarity $-1 \geq n / 3-1$

Pathwidth \leq grid-major height
Pathwidth $=3$
Grid-major height ≥ 2 outerplanarity $-1 \geq n / 3-1$
$n / 6$ triangles will be nested, no matter the outer face

Outerplanarity \leq grid-major height

Outerplanarity \leq grid-major height
Grid-major height \geq pathwidth $=\Omega(\log n)$

Outerplanarity \leq grid-major height
Grid-major height \geq pathwidth $=\Omega(\log n)$

Outerplanarity \leq grid-major height
Grid-major height \geq pathwidth $=\Omega(\log n)$

Outerplanarity \leq grid-major height
Grid-major height \geq pathwidth $=\Omega(\log n)$ Outerplanarity $=2$

Nonsimple \leq simple grid-major height

Nonsimple \leq simple grid-major height

Nonsimple \leq simple grid-major height

Minor of and hence of $W \times 4$ grid

Nonsimple \leq simple grid-major height

Minor of \quad and hence of $W \times 4$ grid \Rightarrow grid-major height ≤ 4

Nonsimple \leq simple grid-major height

Grid-major height ≤ 4
Simple grid-major height $=\Omega(n)$:

Nonsimple \leq simple grid-major height

Grid-major height ≤ 4
Simple grid-major height $=\Omega(n)$:
Diameter of subgraph is $\Omega(n)$

Nonsimple \leq simple grid-major height

Grid-major height ≤ 4
Simple grid-major height $=\Omega(n)$:
Diameter of subgraph is $\Omega(n)$
Some vertex in subgraph is far from 'outer face'

Nonsimple \leq simple grid-major height

Grid-major height ≤ 4
Simple grid-major height $=\Omega(n)$:
Diameter of subgraph is $\Omega(n)$
Some vertex in subgraph is far from 'outer face'

Nonsimple \leq simple grid-major height

Grid-major height ≤ 4
Simple grid-major height $=\Omega(n)$:
Diameter of subgraph is $\Omega(n)$
Some vertex in subgraph is far from 'outer face'
That vertex splits some path in sweep in two pieces

Nonsimple \leq simple grid-major height

Grid-major height ≤ 4
Simple grid-major height $=\Omega(n)$:
Diameter of subgraph is $\Omega(n)$
Some vertex in subgraph is far from 'outer face'
That vertex splits some path in sweep in two pieces
At least one piece lies in subgraph, and is therefore long

Simple grid-major height \leq graph-drawing height

For series-parallel graphs, simple grid-major height is $O(\log n)$

Simple grid-major height \leq graph-drawing height
For series-parallel graphs, simple grid-major height is $O(\log n)$

edge

series

parallel

Simple grid-major height \leq graph-drawing height

For series-parallel graphs, simple grid-major height is $O(\log n)$ Contact-representation with source/target in top/bottom-right

Simple grid-major height \leq graph-drawing height
For series-parallel graphs, simple grid-major height is $O(\log n)$ Contact-representation with source/target in top/bottom-right

Simple grid-major height \leq graph-drawing height
For series-parallel graphs, simple grid-major height is $O(\log n)$ Contact-representation with source/target in top/bottom-right

Simple grid-major height \leq graph-drawing height
For series-parallel graphs, simple grid-major height is $O(\log n)$
Contact-representation with source/target in top/bottom-right

Simple grid-major height \leq graph-drawing height
For series-parallel graphs, simple grid-major height is $O(\log n)$
Contact-representation with source/target in top/bottom-right

parallel

Simple grid-major height \leq graph-drawing height
For series-parallel graphs, simple grid-major height is $O(\log n)$
Contact-representation with source/target in top/bottom-right

series

parallel

Height increases (by 2) only if combined grids are similar height
\Rightarrow grid-major height $=O(\log n)$

Simple grid-major height \leq graph-drawing height
For series-parallel graphs, simple grid-major height is $O(\log n)$

There exist series-parallel graphs with
graph-drawing height $=\Omega\left(2^{\sqrt{\log n}}\right)$ [Frati10]

Simple grid-major height \leq graph-drawing height
For series-parallel graphs, simple grid-major height is $O(\log n)$

There exist series-parallel graphs with
graph-drawing height $=\Omega\left(2^{\sqrt{\log n}}\right)$ [Frati10]
Triangulating them cannot decrease height

Overview of results

2 outerplanarity -1 and pathwidth
grid-major height
contact representation height
$=$ homotopy height
simple grid-major height
simple contact representation height $=$ simple homotopy height
visibility representation height
straight-line drawing height inequalities are strict gaps are nonconstant

Overview of results

Can we efficiently compute these parameters?
2 outerplanarity -1 and pathwidth (they are FPT in height)
grid-major height
contact representation height
$=$ homotopy height
simple contact representation height $=$ simple homotopy height
visibility representation height
straight-line drawing height
inequalities are strict
gaps are nonconstant

