On the Edge-Vertex Ratio of Maximal Thrackles

Oswin Aichholzer Linda Kleist Boris Klemz Felix Schröder Birgit Vogtenhuber

September 27, 2019

Definition ((Geometric) Thrackle)

- ► Topological (geometric) drawing *T* of a graph *G*
- Any two edges in T have exactly one point in common, either:
 - at a common endpoint, or
 - at a proper crossing.

Definition ((Geometric) Thrackle)

- ► Topological (geometric) drawing *T* of a graph *G*
- Any two edges in T have exactly one point in common, either:
 - at a common endpoint, or
 - at a proper crossing.

Conjecture (Conway) Thrackles satisfy $|E(T)| \le |V(T)|$.

Definition ((Geometric) Thrackle)

- ► Topological (geometric) drawing *T* of a graph *G*
- Any two edges in T have exactly one point in common, either:
 - at a common endpoint, or
 - at a proper crossing.

Conjecture (Conway)

Thrackles have edge-vertex-ratio $\varepsilon(T) \leq 1$.

Definition ((Geometric) Thrackle)

- ► Topological (geometric) drawing *T* of a graph *G*
- Any two edges in T have exactly one point in common, either:
 - at a common endpoint, or
 - at a proper crossing.

Conjecture (Conway)

Thrackles with edge-vertex-ratio $\varepsilon(T) = 1$ are maximal thrackles.

Definition ((Geometric) Thrackle)

- ► Topological (geometric) drawing *T* of a graph *G*
- Any two edges in T have exactly one point in common, either:
 - at a common endpoint, or
 - at a proper crossing.

Conjecture (Conway)

Thrackles with edge-vertex-ratio $\varepsilon(T) = 1$ are maximal thrackles.

Problem

Let T be a maximal thrackle. How small can $\varepsilon(T)$ be? What are the asymptotics?

Problem

_

Let T be a maximal thrackle. How small can $\varepsilon(T)$ be? What are the asymptotics?

Setting	Topological	
with isolated vertices $(\delta(extsf{T})=0)$	$ E(T) \leq 5$	

Problem

Let T be a maximal thrackle. How small can $\varepsilon(T)$ be? What are the asymptotics?

Setting	Topological	
with isolated vertices $(\delta(T) = 0)$	$ E(T) \leq 5$	
without isolated vertices $(\delta(au)=1)$	$\varepsilon(T) \leq \frac{5}{6}$	

Problem

Let T be a maximal (geometric) thrackle. How small can $\varepsilon(T)$ be? What are the asymptotics?

Setting	Topological	Geometric
with isolated vertices $(\delta(\mathcal{T})=0)$	$ E(T) \leq 5$	$ E(T) \leq 3$
without isolated vertices $(\delta(\mathcal{T})=1)$	$\varepsilon(T) \leq \frac{5}{6}$	$ E(T) \leq \frac{n+5}{2}$

Problem

Let T be a maximal (geometric) thrackle. How small can $\varepsilon(T)$ be? What are the asymptotics?

Setting	Topological	Geometric
with isolated vertices $(\delta(\mathcal{T})=0)$	$ E(T) \leq 5$	$ E(T) \leq 3$
without isolated vertices $(\delta(extsf{T})=1)$	$\varepsilon(T) \leq \frac{5}{6}$	$ E(T) \leq \frac{n+5}{2}$

All of these results except for the $\frac{5}{6}$ are essentially best possible.

- a) maximal geometric thrackles: $|E(T_a)| \leq 7$
- b) maximal geometric thrackles: $\delta(T_b) = 1, |E(T_b)| \le \frac{n+5}{2}$

- a) maximal geometric thrackles: $|E(T_a)| \leq 7$
- b) maximal geometric thrackles: $\delta(T_b) = 1, |E(T_b)| \le \frac{n+5}{2}$

- a) maximal geometric thrackles: $|E(T_a)| \leq 7$
- b) maximal geometric thrackles: $\delta(T_b) = 1, |E(T_b)| \le \frac{n+5}{2}$

- a) maximal geometric thrackles: $|E(T_a)| \leq 7$
- b) maximal geometric thrackles: $\delta(T_b) = 1, |E(T_b)| \le \frac{n+5}{2}$

Theorem

Theorem

There exist maximal thrackles T': $\delta(T') = 1, \varepsilon(T') = \frac{5}{6}$.

Theorem

There exist maximal thrackles T': $\delta(T') = 1, \varepsilon(T') = \frac{5}{6}$.

Belt construction of Woodall (1972)

Kynčl belt construction

Kynčl belt construction

Overview+Open Problems

Overview+Open Problems

$\begin{array}{|c|c|c|c|}\hline Setting & Topological & Geometric \\\hline with isolated vertices (\delta(T) = 0) & |E(T)| \leq 5 & |E(T)| \leq 3 \\\hline without isolated vertices (\delta(T) = 1) & \varepsilon(T) \leq \frac{5}{6} & |E(T)| \leq \frac{n+5}{2} \\\hline \end{array}$

- Are there any maximal matching thrackles?
- Can you prove a better lower bound than $\frac{1}{2}$?
- Are there any other better examples than Kynčl's example?
- Can you lower the constant 5 for maximal geometric thrackles without isolated vertices?
- ► Does Conway's Conjecture ε(T) ≤ 1 hold?

Thank you for your attention!