On the Edge-Vertex Ratio of Maximal Thrackles

Oswin Aichholzer Linda Kleist Boris Klemz
Felix Schröder Birgit Vogtenhuber

September 27, 2019

Thrackles and Conway's Conjecture

Definition ((Geometric) Thrackle)

- Topological (geometric) drawing T of a graph G
- Any two edges in T have exactly one point in common, either:
- at a common endpoint, or
- at a proper crossing.

Kynčl's Example

Thrackles and Conway's Conjecture

Definition ((Geometric) Thrackle)

- Topological (geometric) drawing T of a graph G
- Any two edges in T have exactly one point in common, either:
- at a common endpoint, or
- at a proper crossing.

Kynčl's Example
Conjecture (Conway)
Thrackles satisfy $|E(T)| \leq|V(T)|$.

Thrackles and Conway's Conjecture

Definition ((Geometric) Thrackle)

- Topological (geometric) drawing T of a graph G
- Any two edges in T have exactly one point in common, either:
- at a common endpoint, or
- at a proper crossing.

Kynčl's Example

Conjecture (Conway)
Thrackles have edge-vertex-ratio $\varepsilon(T) \leq 1$.

Thrackles and Conway's Conjecture

Definition ((Geometric) Thrackle)

- Topological (geometric) drawing T of a graph G
- Any two edges in T have exactly one point in common, either:
- at a common endpoint, or
- at a proper crossing.

Kynčl's Example

Conjecture (Conway)
Thrackles with edge-vertex-ratio $\varepsilon(T)=1$ are maximal thrackles.

Thrackles and Conway's Conjecture

Definition ((Geometric) Thrackle)

- Topological (geometric) drawing T of a graph G
- Any two edges in T have exactly one point in common, either:
- at a common endpoint, or
- at a proper crossing.

Conjecture (Conway)
Thrackles with edge-vertex-ratio $\varepsilon(T)=1$ are maximal thrackles.

Our Contribution

Problem
Let T be a maximal thrackle. How small can $\varepsilon(T)$ be? What are the asymptotics?

Our Contribution

Problem

Let T be a maximal thrackle. How small can $\varepsilon(T)$ be? What are the asymptotics?

Setting	Topological	
with isolated vertices $(\delta(T)=0)$	$\|E(T)\| \leq 5$	

Our Contribution

Problem

Let T be a maximal thrackle. How small can $\varepsilon(T)$ be? What are the asymptotics?

Setting	Topological
with isolated vertices $(\delta(T)=0)$	$\|E(T)\| \leq 5$
without isolated vertices $(\delta(T)=1)$	$\varepsilon(T) \leq \frac{5}{6}$

Our Contribution

Problem

Let T be a maximal (geometric) thrackle. How small can $\varepsilon(T)$ be? What are the asymptotics?

Setting	Topological	Geometric
with isolated vertices $(\delta(T)=0)$	$\|E(T)\| \leq 5$	$\|E(T)\| \leq 3$
without isolated vertices $(\delta(T)=1)$	$\varepsilon(T) \leq \frac{5}{6}$	$\|E(T)\| \leq \frac{n+5}{2}$

Our Contribution

Problem
Let T be a maximal (geometric) thrackle. How small can $\varepsilon(T)$ be? What are the asymptotics?

Setting	Topological	Geometric
with isolated vertices $(\delta(T)=0)$	$\|E(T)\| \leq 5$	$\|E(T)\| \leq 3$
without isolated vertices $(\delta(T)=1)$	$\varepsilon(T) \leq \frac{5}{6}$	$\|E(T)\| \leq \frac{n+5}{2}$

All of these results except for the $\frac{5}{6}$ are essentially best possible.

Maximal Geometric Thrackles

Theorem
There exist
a) maximal geometric thrackles: $\left|E\left(T_{a}\right)\right| \leq 7$
b) maximal geometric thrackles: $\delta\left(T_{b}\right)=1,\left|E\left(T_{b}\right)\right| \leq \frac{n+5}{2}$

Maximal Geometric Thrackles

Theorem
There exist
a) maximal geometric thrackles: $\left|E\left(T_{a}\right)\right| \leq 7$
b) maximal geometric thrackles: $\delta\left(T_{b}\right)=1,\left|E\left(T_{b}\right)\right| \leq \frac{n+5}{2}$

Maximal Geometric Thrackles

Theorem
There exist
a) maximal geometric thrackles: $\left|E\left(T_{a}\right)\right| \leq 7$
b) maximal geometric thrackles: $\delta\left(T_{b}\right)=1,\left|E\left(T_{b}\right)\right| \leq \frac{n+5}{2}$

Maximal Geometric Thrackles

Theorem
There exist
a) maximal geometric thrackles: $\left|E\left(T_{a}\right)\right| \leq 7$
b) maximal geometric thrackles: $\delta\left(T_{b}\right)=1,\left|E\left(T_{b}\right)\right| \leq \frac{n+5}{2}$

Maximal Thrackles with isolated vertices

Theorem
There are maximal thrackles T with $|E(T)| \leq 5$.

Maximal Thrackles with isolated vertices

Theorem
There are maximal thrackles T with $|E(T)| \leq 5$.

Maximal Thrackles with isolated vertices

Theorem
There are maximal thrackles T with $|E(T)| \leq 5$.

Maximal Thrackles with isolated vertices

Theorem
There are maximal thrackles T with $|E(T)| \leq 5$.

Maximal Thrackles with isolated vertices

Theorem
There are maximal thrackles T with $|E(T)| \leq 5$.

Maximal Thrackles with isolated vertices

Theorem
There are maximal thrackles T with $|E(T)| \leq 5$.

Maximal Thrackles without isolated vertices

Belt Construction 1

Theorem
There exist maximal thrackles $T^{\prime}: \delta\left(T^{\prime}\right)=1, \varepsilon\left(T^{\prime}\right)=\frac{5}{6}$.

Maximal Thrackles without isolated vertices

Belt Construction 1

Theorem
There exist maximal thrackles $T^{\prime}: \delta\left(T^{\prime}\right)=1, \varepsilon\left(T^{\prime}\right)=\frac{5}{6}$. Belt construction of Woodall (1972)

Maximal Thrackles without isolated vertices

Belt Construction 2

Kynčl belt construction

Maximal Thrackles without isolated vertices

Belt Construction 2

Kynčl belt construction

Overview+Open Problems

Setting	Topological	Geometric
with isolated vertices $(\delta(T)=0)$	$\|E(T)\| \leq 5$	$\|E(T)\| \leq 3$
without isolated vertices $(\delta(T)=1)$	$\varepsilon(T) \leq \frac{5}{6}$	$\|E(T)\| \leq \frac{n+5}{2}$

Overview+Open Problems

Setting	Topological	Geometric
with isolated vertices $(\delta(T)=0)$	$\|E(T)\| \leq 5$	$\|E(T)\| \leq 3$
without isolated vertices $(\delta(T)=1)$	$\varepsilon(T) \leq \frac{5}{6}$	$\|E(T)\| \leq \frac{n+5}{2}$

- Are there any maximal matching thrackles?
- Can you prove a better lower bound than $\frac{1}{2}$?
- Are there any other better examples than Kynčl's example?
- Can you lower the constant 5 for maximal geometric thrackles without isolated vertices?
- Does Conway's Conjecture $\varepsilon(T) \leq 1$ hold?

Thank you for your attention!

