A Natural Quadratic Approach to the Generalized Graph Layering Problem

Sven Mallach

Department of Mathematics \& Computer Science
University of Cologne, Germany
Graph Drawing \& Network Visualization
Pruhonice, 20th September 2019

Layered Drawings of Directed Graphs

Drawing Restictions:

- Vertices on consecutive layers
- No two adjacent vertices on the same layer
- (Major) Common arc direction

Layered Drawings of Directed Graphs

Drawing Restictions:

- Vertices on consecutive layers
- No two adjacent vertices on the same layer
- (Major) Common arc direction
- Aesthetic layering objectives:
- 'Compactness' (Width \mathcal{W}, Height \mathcal{H}, Total Arc Length),
- Few Arc Reversals

Sugiyama-Style Drawings of Directed Graphs

Classic Approach (Sugiyama et al. [1981]):

1. Cycle Removal
2. Vertex Layering
3. Crossing Minimization
4. Horizontal Coordinates \& Arc Routing

Sugiyama-Style Drawings of Directed Graphs

Classic Approach (Sugiyama et al. [1981]):

1. Cycle Removal
2. Vertex Layering
3. Crossing Minimization
4. Horizontal Coordinates \& Arc Routing

Limitations w.r.t. steps $1 \& 2$:
Longest path may impede 'compactness' / good aspect ratio from the very beginning.

Visual effects of poor and good aspect ratios

Two drawings of a graph, the right of which has two arcs reversed.

Area-Adaptive Graph Layering

Rüegg et al. [2017]: Adapt Layering w.r.t. target drawing area.
Input: (Relative) Area width r_{W} and height r_{H}, denoted $r_{W}: r_{H}$.
Goal: Maximum Resolution or Scaling Factor $\mathcal{S}:=\min \left\{\frac{r_{w}}{\mathcal{W}}, \frac{r_{H}}{\mathcal{H}}\right\}$ (plus possibly minimum edge length / number of reversed arcs).

$1: 1$
$2: 1$

Area-Adaptive Graph Layering

Rüegg et al. [2017]: Adapt Layering w.r.t. target drawing area.
Input: (Relative) Area width r_{W} and height r_{H}, denoted $r_{W}: r_{H}$.
Goal: Maximum Resolution or Scaling Factor $\mathcal{S}:=\min \left\{\frac{r_{W}}{\mathcal{W}}, \frac{r_{H}}{\mathcal{H}}\right\}$ (plus possibly minimum edge length / number of reversed arcs).

Maximum-Scale Generalized Layering Problem (GLP-MS)

Given $G=(V, A), r_{W}$, and r_{H}, find a feasible layering $L: V \mapsto \mathbb{N}_{+}$ minimizing

$$
\omega_{\text {len }}\left(\sum_{u v \in A}|L(v)-L(u)|\right)+\omega_{\text {rev }}|\{u v \in A \mid L(v)<L(u)\}|-\omega_{\text {scl }} \mathcal{S}
$$

Graph Layering - Evolution of Optimization Problems

Name
DLP $\quad \sum_{u v \in A}(L(v)-L(u))$
DLP-W $\quad \sum_{u v \in A} \omega_{\text {len }}(L(v)-L(u))+\omega_{\text {wid }} \mathcal{W}$
GLP

$$
\begin{aligned}
& \sum_{u v \in A} \omega_{\text {len }}|L(v)-L(u)|+ \\
& \omega_{\text {rev }}|\{u v \in A \mid L(v)<L(u)\}|
\end{aligned}
$$

GLP-W

$$
\sum_{u v \in A} \omega_{\text {len }}|L(v)-L(u)|+
$$

$$
\omega_{\text {rev }}|\{u v \in A \mid L(v)<L(u)\}|+\omega_{\text {wid }} \mathcal{W} \quad \text { Jabrayilov et al. [GD 2016] }
$$

GLP-MS* $\quad \sum_{u v \in A} \omega_{\text {len }}|L(v)-L(u)|+$
$\omega_{\text {rev }}|\{u v \in A \mid L(v)<L(u)\}|+\omega_{\text {scl }} \overline{\mathcal{S}} \quad$ Rüegg et al. [JGAA 2017] $\left(\overline{\mathcal{S}}:=\frac{1}{\mathcal{S}}\right)$

Graph Layering and Mixed-Integer Linear Programming

Prior models are based on either assignment or ordering variables.

Graph Layering and Mixed-Integer Linear Programming

Prior models are based on either assignment or ordering variables.
Assignment variables: $x_{v, k}:= \begin{cases}1, & \text { if } L(v)=k \\ 0, & \text { otherwise }\end{cases}$
Ordering variables: $y_{k, v}:= \begin{cases}1, & \text { if } L(v)>k \\ 0, & \text { otherwise }\end{cases}$

Graph Layering and Mixed-Integer Linear Programming

Prior models are based on either assignment or ordering variables.
Assignment variables: $x_{v, k}:= \begin{cases}1, & \text { if } L(v)=k \\ 0, & \text { otherwise }\end{cases}$
Ordering variables: $y_{k, v}:= \begin{cases}1, & \text { if } L(v)>k \\ 0, & \text { otherwise }\end{cases}$

Linear expression of restrictions and objectives?

Graph Layering and Mixed-Integer Linear Programming

Prior models are based on either assignment or ordering variables.
Assignment variables: $x_{v, k}:= \begin{cases}1, & \text { if } L(v)=k \\ 0, & \text { otherwise }\end{cases}$
Ordering variables: $y_{k, v}:= \begin{cases}1, & \text { if } L(v)>k \\ 0, & \text { otherwise }\end{cases}$

Linear expression of restrictions and objectives?

- Easy if arc directions are fixed (DLP cases).

Graph Layering and Mixed-Integer Linear Programming

Prior models are based on either assignment or ordering variables.
Assignment variables: $x_{v, k}:= \begin{cases}1, & \text { if } L(v)=k \\ 0, & \text { otherwise }\end{cases}$
Ordering variables: $y_{k, v}:= \begin{cases}1, & \text { if } L(v)>k \\ 0, & \text { otherwise }\end{cases}$
Linear expression of restrictions and objectives?

- Easy if arc directions are fixed (DLP cases).
- DLP-W: Dummy vertex variables:

$$
d_{u v, k}:= \begin{cases}1, & \text { if } u v \in A \text { spans layer } k \\ 0, & \text { otherwise }\end{cases}
$$

- Additional option to "count" edge lengths.

Graph Layering and Mixed-Integer Linear Programming

But: Variable Arc Directions change the scene:

Graph Layering and Mixed-Integer Linear Programming

But: Variable Arc Directions change the scene:

- Need to count arc reversals in addition
\Rightarrow Need arc reversal variables: $r_{u v}:=\left\{\begin{array}{l}1, \text { if } L(v)<L(u) \\ 0, \text { otherwise }\end{array}\right.$

Graph Layering and Mixed-Integer Linear Programming

But: Variable Arc Directions change the scene:

- Need to count arc reversals in addition
\Rightarrow Need arc reversal variables: $r_{u v}:= \begin{cases}1, & \text { if } L(v)<L(u) \\ 0, & \text { otherwise }\end{cases}$
- Need to model $|L(v)-L(u)|$ (instead of $L(v)-L(u)$).
- Need to model dummy vertices based on two possible arc directions.

Graph Layering and Mixed-Integer Linear Programming

But: Variable Arc Directions change the scene:

- Need to count arc reversals in addition
\Rightarrow Need arc reversal variables: $r_{u v}:= \begin{cases}1, & \text { if } L(v)<L(u) \\ 0, & \text { otherwise }\end{cases}$
- Need to model $|L(v)-L(u)|$ (instead of $L(v)-L(u)$).
- Need to model dummy vertices based on two possible arc directions.
- Case Distinctions: More and weaker linear constraints to enforce correct values on $r_{u v}$ and $d_{u v, k}$.

A Quadratic Perspective on Graph Layering

Graph Layering is of quadratic nature - not only geometrically.

A Quadratic Perspective on Graph Layering

Graph Layering is of quadratic nature - not only geometrically.

- Arc directions, (absolute) edge lengths, and dummy vertices are all based on conjunctive vertex placement decisions.

A Quadratic Perspective on Graph Layering

Graph Layering is of quadratic nature - not only geometrically.

- Arc directions, (absolute) edge lengths, and dummy vertices are all based on conjunctive vertex placement decisions.

Idea: Model restrictions and objective from a quadratic assignment perspective (and linearize afterwards).

A Quadratic Perspective on Graph Layering

Graph Layering is of quadratic nature - not only geometrically.

- Arc directions, (absolute) edge lengths, and dummy vertices are all based on conjunctive vertex placement decisions.

Idea: Model restrictions and objective from a quadratic assignment perspective (and linearize afterwards).

- There is a stronger and compact linearization technique.

A Quadratic Perspective on Graph Layering

Graph Layering is of quadratic nature - not only geometrically.

- Arc directions, (absolute) edge lengths, and dummy vertices are all based on conjunctive vertex placement decisions.

Idea: Model restrictions and objective from a quadratic assignment perspective (and linearize afterwards).

- There is a stronger and compact linearization technique.
- For any arc $u v \in A$, there is exactly one pair of layers k and ℓ, $k \neq \ell$, such that $x_{u, k} \cdot x_{v, \ell}=1$. All other products are zero.

A Quadratic Perspective on Graph Layering

Graph Layering is of quadratic nature - not only geometrically.

- Arc directions, (absolute) edge lengths, and dummy vertices are all based on conjunctive vertex placement decisions.

Idea: Model restrictions and objective from a quadratic assignment perspective (and linearize afterwards).

- There is a stronger and compact linearization technique.
- For any arc $u v \in A$, there is exactly one pair of layers k and ℓ, $k \neq \ell$, such that $x_{u, k} \cdot x_{V, \ell}=1$. All other products are zero.
- Assignment variables more intuitive than ordering variables.

A Quadratic Assignment Perspective on Graph Layering

If there are Y layers, the length of $u v \in A$ thus equals

$$
\sum_{\ell=2}^{Y} \sum_{k=1}^{\ell-1}\left((\ell-k) \cdot\left(x_{u, \ell} \cdot x_{v, k}+x_{u, k} \cdot x_{V, \ell}\right)\right)
$$

A Quadratic Assignment Perspective on Graph Layering

If there are Y layers, the length of $u v \in A$ thus equals
$\sum_{\ell=2}^{Y} \sum_{k=1}^{\ell-1}\left((\ell-k) \cdot\left(x_{u, \ell} \cdot x_{v, k}+x_{u, k} \cdot x_{V, \ell}\right)\right)$

An arc $u v \in A$ is reversed if and only if the expression

$$
\sum_{\ell=2}^{Y}\left(x_{u, \ell} \cdot \sum_{k=1}^{\ell-1} x_{v, k}\right)
$$

evaluates to one. Otherwise, the expression is zero.

A Quadratic Assignment Perspective on Graph Layering

An arc $u v \in A$ causes a dummy vertex on layer $k \in\{2, \ldots, Y-1\}$ if and only if k is between the layers of u and v, i.e., if

$$
\sum_{\ell=1}^{k-1} \sum_{m=k+1}^{Y}\left(x_{u, \ell} \cdot x_{v, m}+x_{u, m} \cdot x_{v, \ell}\right)
$$

evaluates to one. Again, the term will be zero otherwise.

$$
\begin{cases}O_{u} & \ell \\ & k-1 \\ k & k+1 \\ & k=\end{cases}
$$

A Basic Quadratic Layer Assignment Model (QLA)

Replace the product $x_{u, k} \cdot x_{v, \ell}$ by variables $p_{u, k, v, \ell}$ for all $u v \in A$ and all $k, \ell \in\{1, \ldots, Y\}$.

A Basic Quadratic Layer Assignment Model (QLA)

Replace the product $x_{u, k} \cdot x_{v, \ell}$ by variables $p_{u, k, v, \ell}$ for all $u v \in A$ and all $k, \ell \in\{1, \ldots, Y\}$.

Then a feasible layering is characterized by the restrictions:

$$
\begin{array}{lll}
\sum_{k=1}^{Y} x_{v, k} & =1 & \text { for all } v \in V \\
\sum_{\ell=1}^{Y} p_{u, k, v, \ell} & =x_{u, k} & \\
\text { for all } u v \in A, k \in\{1, \ldots, Y\} \\
\sum_{k=1}^{Y} p_{u, k, v, \ell} & =x_{v, \ell} & \\
\text { for all } u v \in A, \ell \in\{1, \ldots, Y\} \\
p_{u, k, v, k} & =0 & \\
x_{v, k} & \in\{0,1\} & \text { for all } u v \in A, k \in\{1, \ldots, Y\} \\
p_{u, k, v, \ell} & \in[0,1] & \\
\text { for all } v \in V, k \in\{1, \ldots, Y\} \\
& & \\
& \\
x_{l} \in A, k, \ell \in\{1, \ldots, Y\}
\end{array}
$$

Computational Study

Two runtime competitions:
QLA-W vs. CGL-W (Jabrayilov et al. [2016])
QLA-MS* vs. CGL-MS* (Rüegg et al. [2017])

Computational Study

Two runtime competitions:
QLA-W vs. CGL-W (Jabrayilov et al. [2016])
QLA-MS* vs. CGL-MS* (Rüegg et al. [2017])
Model Sizes:

Computational Study

Two runtime competitions:
QLA-W vs. CGL-W (Jabrayilov et al. [2016])
QLA-MS* vs. CGL-MS* (Rüegg et al. [2017])
Model Sizes:
CGL-W/MS* $\approx|V| \cdot Y+|A| \cdot Y$ variables
QLA-W/MS* $\quad \approx|V| \cdot Y+|A| \cdot Y^{2}$ variables

Computational Study

Two runtime competitions:
QLA-W vs. CGL-W (Jabrayilov et al. [2016])
QLA-MS* vs. CGL-MS* (Rüegg et al. [2017])
Model Sizes:
CGL-W/MS* $\approx|V| \cdot Y+|A| \cdot Y$ variables
QLA-W/MS* $\quad \approx|V| \cdot Y+|A| \cdot Y^{2}$ variables

CGL-W $\approx(4|A|+|V|) \cdot Y+4|A|$ constraints
QLA-W $\quad \approx(2|A|) \cdot Y+|V|$ constraints
QLA-/CGL-MS* versions: $|V|$ more constraints each.

GLP and GLP-W - Results ATTar (Di Battista et al. [1997])

Two experiments (Gurobi 8, timeout at 1800s (30 min.)):
(1) Almost no width emphasis (GLP setting)
(2) Major emphasis on width minimization

\times QLA-W
CGL-W

Intel Core i7-3770T (2.5 GHz), 1 Thread, 8 GB RAM, Linux

GLP-MS* - Results ATTar (Di Battista et al. [1997])

Three experiments (Gurobi 8, timeout at 1800s (30 min.)):

- $r_{W}: r_{H}$ ratios $1: 2,1: 1$, and $2: 1$.
- Major emphasis on maximum scaling factor.

\times QLA-MS* \times CGL-MS*

Intel Core i7-3770T (2.5 GHz), 1 Thread, 8 GB RAM, Linux

