A Natural Quadratic Approach to the Generalized Graph Layering Problem

Sven Mallach

Department of Mathematics & Computer Science University of Cologne, Germany

Graph Drawing & Network Visualization Pruhonice, 20th September 2019

Layered Drawings of Directed Graphs

Drawing Restictions:

- Vertices on consecutive layers
- No two adjacent vertices on the same layer
- (Major) Common arc direction

Layered Drawings of Directed Graphs

Drawing Restictions:

- Vertices on consecutive layers
- No two adjacent vertices on the same layer
- (Major) Common arc direction
- Aesthetic layering objectives:
 - 'Compactness' (Width W, Height H, Total Arc Length),
 - Few Arc Reversals

Sugiyama-Style Drawings of Directed Graphs

Classic Approach (Sugiyama et al. [1981]):

- 1. Cycle Removal
- 2. Vertex Layering
- 3. Crossing Minimization
- 4. Horizontal Coordinates & Arc Routing

Sugiyama-Style Drawings of Directed Graphs

Classic Approach (Sugiyama et al. [1981]):

- 1. Cycle Removal
- 2. Vertex Layering
- 3. Crossing Minimization
- 4. Horizontal Coordinates & Arc Routing

Limitations w.r.t. steps 1 & 2: Longest path may impede 'compactness' / good aspect ratio from the very beginning.

Visual effects of poor and good aspect ratios

Two drawings of a graph, the right of which has *two* arcs reversed.

Area-Adaptive Graph Layering

Rüegg et al. [2017]: Adapt Layering w.r.t. target drawing area.

Input: (Relative) Area width r_W and height r_H , denoted r_W : r_H .

Goal: Maximum Resolution or Scaling Factor $S := \min\{\frac{r_W}{W}, \frac{r_H}{H}\}$ (plus possibly minimum edge length / number of reversed arcs).

Area-Adaptive Graph Layering

Rüegg et al. [2017]: Adapt Layering w.r.t. target drawing area.

Input: (Relative) Area width r_W and height r_H , denoted r_W : r_H .

Goal: Maximum Resolution or Scaling Factor $S := \min\{\frac{r_W}{W}, \frac{r_H}{H}\}$ (plus possibly minimum edge length / number of reversed arcs).

Maximum-Scale Generalized Layering Problem (GLP-MS) Given G = (V, A), r_W , and r_H , find a feasible layering $L : V \mapsto \mathbb{N}_+$ minimizing

$$\omega_{len} \left(\sum_{uv \in A} |L(v) - L(u)| \right) + \omega_{rev} |\{uv \in A \mid L(v) < L(u)\}| - \omega_{scl} \mathcal{S}$$

Graph Layering - Evolution of Optimization Problems

Name	Objective	Exact Approach
DLP	$\sum_{uv\in A} \left(L(v) - L(u) \right)$	Gansner et al. [1993]
DLP-W	$\sum_{uv \in \mathcal{A}} \omega_{len} \left(L(v) - L(u) ight) + \omega_{wid} \ \mathcal{W}$	Healy, Nikolov [GD 2002]
GLP	$\sum_{uv\in A}\omega_{len}\left L(v)-L(u)\right +$	
	$\omega_{rev} \{ uv \in A \mid L(v) < L(u) \} $	Rüegg et al. [GD 2016]
GLP-W	$\sum_{uv\in A}\omega_{len}\left L(v)-L(u)\right +$	
	$\omega_{rev} \{ uv \in A \mid L(v) < L(u) \} + \omega_{wid} \mathcal{W}$	Jabrayilov et al. [GD 2016]
GLP-MS*	$\sum_{uv\in A}\omega_{len}\left L(v)-L(u)\right +$	
	$\omega_{rev} \{ uv \in A \mid L(v) < L(u) \} + \omega_{scl} \ \bar{S}$	Rüegg et al. [JGAA 2017]
$(ar{\mathcal{S}}\coloneqqrac{1}{\mathcal{S}})$		

Prior models are based on either *assignment* or *ordering* variables.

Prior models are based on either *assignment* or *ordering* variables.

Assignment variables:
$$x_{v,k} := \begin{cases} 1, \text{ if } L(v) = k \\ 0, \text{ otherwise} \end{cases}$$

Ordering variables: $y_{k,v} := \begin{cases} 1, \text{ if } L(v) > k \\ 0, \text{ otherwise} \end{cases}$

Prior models are based on either *assignment* or *ordering* variables.

Assignment variables:
$$x_{v,k} := \begin{cases} 1, & \text{if } L(v) = k \\ 0, & \text{otherwise} \end{cases}$$

Ordering variables: $y_{k,v} := \begin{cases} 1, & \text{if } L(v) > k \\ 0, & \text{otherwise} \end{cases}$

Linear expression of restrictions and objectives?

Prior models are based on either *assignment* or *ordering* variables.

Assignment variables:
$$x_{v,k} := \begin{cases} 1, & \text{if } L(v) = k \\ 0, & \text{otherwise} \end{cases}$$

Ordering variables: $y_{k,v} := \begin{cases} 1, & \text{if } L(v) > k \\ 0, & \text{otherwise} \end{cases}$

Linear expression of restrictions and objectives?

• Easy if arc directions are fixed (DLP cases).

Prior models are based on either assignment or ordering variables.

Assignment variables:
$$x_{v,k} := \begin{cases} 1, & \text{if } L(v) = k \\ 0, & \text{otherwise} \end{cases}$$

Ordering variables: $y_{k,v} := \begin{cases} 1, & \text{if } L(v) > k \\ 0, & \text{otherwise} \end{cases}$

Linear expression of restrictions and objectives?

- Additional option to "count" edge lengths.

But: Variable Arc Directions change the scene:

But: Variable Arc Directions change the scene:

► Need to count arc reversals in addition ⇒ Need arc reversal variables: $r_{uv} := \begin{cases} 1, & \text{if } L(v) < L(u) \\ 0, & \text{otherwise} \end{cases}$

But: Variable Arc Directions change the scene:

- ► Need to count arc reversals in addition ⇒ Need arc reversal variables: $r_{uv} := \begin{cases} 1, & \text{if } L(v) < L(u) \\ 0, & \text{otherwise} \end{cases}$
- ▶ Need to model |L(v) L(u)| (instead of L(v) L(u)).
- Need to model dummy vertices based on two possible arc directions.

But: Variable Arc Directions change the scene:

- ► Need to count arc reversals in addition ⇒ Need arc reversal variables: $r_{uv} := \begin{cases} 1, & \text{if } L(v) < L(u) \\ 0, & \text{otherwise} \end{cases}$
- ▶ Need to model |L(v) L(u)| (instead of L(v) L(u)).
- Need to model dummy vertices based on two possible arc directions.
- Case Distinctions: More and weaker linear constraints to enforce correct values on r_{uv} and d_{uv,k}.

Graph Layering is of quadratic nature - not only geometrically.

Graph Layering is of quadratic nature - not only geometrically.

Arc directions, (absolute) edge lengths, and dummy vertices are all based on *conjunctive* vertex placement decisions.

Graph Layering is of quadratic nature - not only geometrically.

Arc directions, (absolute) edge lengths, and dummy vertices are all based on *conjunctive* vertex placement decisions.

Idea: Model restrictions and objective from a *quadratic* assignment perspective (and linearize afterwards).

Graph Layering is of quadratic nature - not only geometrically.

Arc directions, (absolute) edge lengths, and dummy vertices are all based on *conjunctive* vertex placement decisions.

Idea: Model restrictions and objective from a *quadratic* assignment perspective (and linearize afterwards).

> There is a stronger and compact linearization technique.

Graph Layering is of quadratic nature - not only geometrically.

Arc directions, (absolute) edge lengths, and dummy vertices are all based on *conjunctive* vertex placement decisions.

Idea: Model restrictions and objective from a *quadratic* assignment perspective (and linearize afterwards).

- > There is a stronger and compact linearization technique.
- For any arc uv ∈ A, there is exactly one pair of layers k and l, k ≠ l, such that x_{u,k} · x_{v,l} = 1. All other products are zero.

Graph Layering is of quadratic nature - not only geometrically.

Arc directions, (absolute) edge lengths, and dummy vertices are all based on *conjunctive* vertex placement decisions.

Idea: Model restrictions and objective from a *quadratic* assignment perspective (and linearize afterwards).

- There is a **stronger and compact** linearization technique.
- For any arc uv ∈ A, there is exactly one pair of layers k and l, k ≠ l, such that x_{u,k} · x_{v,l} = 1. All other products are zero.
- Assignment variables more intuitive than ordering variables.

A Quadratic Assignment Perspective on Graph Layering

If there are Y layers, the length of $uv \in A$ thus equals

$$\sum_{\ell=2}^{Y}\sum_{k=1}^{\ell-1}\left(\left(\ell-k\right)\cdot\left(x_{u,\ell}\cdot x_{v,k}+x_{u,k}\cdot x_{v,\ell}\right)\right)$$

1.

If there are Y layers, the length of $uv \in A$ thus equals

$$\sum_{\ell=2}^{Y}\sum_{k=1}^{\ell-1}\left(\left(\ell-k\right)\cdot\left(x_{u,\ell}\cdot x_{v,k}+x_{u,k}\cdot x_{v,\ell}\right)\right)$$

1

An arc $uv \in A$ is reversed if and only if the expression

$$\sum_{\ell=2}^{Y} \left(x_{u,\ell} \cdot \sum_{k=1}^{\ell-1} x_{v,k} \right)$$

evaluates to one. Otherwise, the expression is zero.

An arc $uv \in A$ causes a dummy vertex on layer $k \in \{2, ..., Y - 1\}$ if and only if k is between the layers of u and v, i.e., if

$$\sum_{\ell=1}^{k-1}\sum_{m=k+1}^{Y}(x_{u,\ell}\cdot x_{v,m}+x_{u,m}\cdot x_{v,\ell})$$

evaluates to one. Again, the term will be zero otherwise.

A Basic Quadratic Layer Assignment Model (QLA)

Replace the product $x_{u,k} \cdot x_{v,\ell}$ by variables $p_{u,k,v,\ell}$ for all $uv \in A$ and all $k, \ell \in \{1, \ldots, Y\}$.

A Basic Quadratic Layer Assignment Model (QLA)

Replace the product $x_{u,k} \cdot x_{v,\ell}$ by variables $p_{u,k,v,\ell}$ for all $uv \in A$ and all $k, \ell \in \{1, \ldots, Y\}$.

Then a feasible layering is characterized by the restrictions:

$$\begin{split} \sum_{k=1}^{Y} x_{v,k} &= 1 & \text{for all } v \in V \\ \sum_{\ell=1}^{Y} p_{u,k,v,\ell} &= x_{u,k} & \text{for all } uv \in A, \ k \in \{1,\ldots,Y\} \\ \sum_{k=1}^{Y} p_{u,k,v,\ell} &= x_{v,\ell} & \text{for all } uv \in A, \ \ell \in \{1,\ldots,Y\} \\ p_{u,k,v,k} &= 0 & \text{for all } uv \in A, \ k \in \{1,\ldots,Y\} \\ x_{v,k} &\in \{0,1\} & \text{for all } v \in V, \ k \in \{1,\ldots,Y\} \\ p_{u,k,v,\ell} &\in [0,1] & \text{for all } uv \in A, \ k,\ell \in \{1,\ldots,Y\} \end{split}$$

Model Sizes:

Model Sizes:

 $\mathsf{CGL} extsf{-W}/\mathsf{MS}^* \quad pprox |V|\cdot Y + |A|\cdot Y \;\; \mathsf{variables}$

 $\mathsf{QLA-W}/\mathsf{MS}^* \ pprox |V| \cdot Y + |A| \cdot Y^2$ variables

Model Sizes:

 $\mathsf{CGL} extsf{-W}/\mathsf{MS}^* \quad pprox |V|\cdot Y + |A|\cdot Y \;\; \mathsf{variables}$

 $\mathsf{QLA-W}/\mathsf{MS}^* ~\approx |V|\cdot Y + |A|\cdot Y^2$ variables

CGL-W $\approx (4|A| + |V|) \cdot Y + 4|A|$ constraints

 $\mathsf{QLA-W}$ $pprox (2|A|) \cdot Y + |V|$ constraints

QLA-/CGL-MS* versions: |V| more constraints each.

GLP and GLP-W - Results ATTar (Di Battista et al. [1997])

Two experiments (Gurobi 8, timeout at 1800s (30 min.)):

- (1) Almost no width emphasis (GLP setting)
- (2) Major emphasis on width minimization

Intel Core i7-3770T (2.5 GHz), 1 Thread, 8 GB RAM, Linux

GLP-MS* - Results ATTar (Di Battista et al. [1997])

Three experiments (Gurobi 8, timeout at 1800s (30 min.)):

- *r_W* : *r_H* ratios 1 : 2, 1 : 1, and 2 : 1.
- Major emphasis on maximum scaling factor.

Intel Core i7-3770T (2.5 GHz), 1 Thread, 8 GB RAM, Linux