Chair for
 INFORMATICS I

Efficient Algorithms and

Bundled Crossings Revisited

Steven Chaplick, Thomas C. van Dijk, Myroslav Kryven, Alexander Wolff

Julius-Maximilians-Universität Würzburg, Germany
Ji-won Park
KAIST, Daejeon, Republic of Korea
Alexander Ravsky
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics,
Nat. Acad. Sciences of Ukraine, Lviv, Ukraine

Motivation

Ideally drawings of graphs should avoid crossings ...

Motivation

Ideally drawings of graphs should avoid crossings ... Planar graphs can be drawn without crossings

Motivation

Ideally drawings of graphs should avoid crossings ... Planar graphs can be drawn without crossings but many graphs cannot be drawn without crossings.

Motivation

Ideally drawings of graphs should avoid crossings ... Planar graphs can be drawn without crossings but many graphs cannot be drawn without crossings.

Classical problem in Graph Drawing: How to minimize the number of crossings?

Motivation

Ideally drawings of graphs should avoid crossings ... Planar graphs can be drawn without crossings but many graphs cannot be drawn without crossings.

Classical problem in Graph Drawing: How to minimize the number of crossings?

Motivation

Ideally drawings of graphs should avoid crossings ... Planar graphs can be drawn without crossings but many graphs cannot be drawn without crossings.

Classical problem in Graph Drawing: How to minimize the number of crossings?

Motivation

Ideally drawings of graphs should avoid crossings ... Planar graphs can be drawn without crossings but many graphs cannot be drawn without crossings.

Classical problem in Graph Drawing: How to minimize the number of crossings?

Motivation

Ideally drawings of graphs should avoid crossings ... Planar graphs can be drawn without crossings but many graphs cannot be drawn without crossings.

Classical problem in Graph Drawing: How to minimize the number of crossings?

Motivation

Ideally drawings of graphs should avoid crossings ... Planar graphs can be drawn without crossings but many graphs cannot be drawn without crossings.

Classical problem in Graph Drawing: How to minimize the number of crossings?
 Lots of different variants. Our main result concerns simple circular layouts.

Motivation

Ideally drawings of graphs should avoid crossings ... Planar graphs can be drawn without crossings but many graphs cannot be drawn without crossings.

Classical problem in Graph Drawing: How to minimize the number of crossings?

Lots of different variants.
Our main result concerns simple circular layouts.
 $\begin{aligned} & \text { simple } \\ & \text { avoids: }\end{aligned}>$

This talk concerns bundled crossings, def'd next.

Motivation

There is an FPT algorithm for deciding whether a graph admits a circular layout with k crossings.[Bannister, Eppstein '14]

Motivation

[Holten '06]
Bundle the drawing

There is an FPT algorithm for deciding whether a graph admits a circular layout with k crossings.[Bannister, Eppstein '14]

Motivation

[Holten '06]
Bundle the drawing

There is an FPT algorithm for deciding whether a graph admits a circular layout with k crossings.[Bannister, Eppstein '14]

Motivation

There is an FPT algorithm for deciding whether a graph admits a circular layout with k crossings.[Bannister, Eppstein '14]

Motivation

[Holten '06]
Bundle the drawing

F: [Fink et al. '16]
A: [Alam et al. '16]
Minimize crossings of bundles instead of edges!
\rightarrow gen. layouts: NP-c for fixed [F] and variable [A] embeddings.
fixed embedding: 10-apx for circular, and $O(1)$-apx for gen. layouts [F]
There is an FPT algorithm for deciding whether a graph admits a circular layout with k crossings.[Bannister, Eppstein '14]

Motivation

[Holten '06]
Bundle the drawing

F: [Fink et al. '16]
A: [Alam et al. '16] Minimize crossings of bundles instead of edges!
\rightarrow gen. layouts: NP-c for fixed $[F]$ and variable $[A]$ embeddings.
fixed embedding: $10-\mathrm{apx}$ for circular, and $O(1)$-apx for gen. layouts [F]
Is there an FPT algorithm for deciding whether a graph admits a circular layout with k bundled crossings? [A]

Bundled Crossing

A bundle is a set of pieces of edges that travel in parallel in the drawing.

Bundled Crossing

A bundle is a set of pieces of edges that travel in parallel in the drawing.

Outer edges of a bundle are called frame edges

Bundled Crossing

A bundle is a set of pieces of edges that travel in parallel in the drawing.

Outer edges of a bundle are called frame edges

Bundled Crossing

A bundle is a set of pieces of edges that travel in parallel in the drawing.

Outer edges of a bundle are called frame edges

A bundled crosssing is
a set of crossings inside the region bounded by the frame edges.

Bundled Crossing Minimization

Def. For a given graph G
the circular bundled crossing number $\mathrm{bc}^{\circ}(G)$ of G is the minimum number of bundled crossings
over all possible bundlings of all possible simple circular layouts of G.

Bundled Crossing Minimization

Def. For a given graph G the circular bundled crossing number $\mathrm{bc}^{\circ}(G)$ of G is the minimum number of bundled crossings over all possible bundlings of all possible simple circular layouts of G.
Thm. Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.
resolves an open problem of [Alam et al. 2016]

Bundled Crossing Minimization

Def. For a given graph G
the circular bundled crossing number $\mathrm{bc}^{\circ}(G)$ of G is the minimum number of bundled crossings over all possible bundlings of all possible simple circular layouts of G.
Thm. Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.
\longrightarrow resolves an open problem of [Alam et al. 2016]
Remark on simple vs. non-simple: consider $K_{3,3}$

Bundled Crossing Minimization

Def. For a given graph G
the circular bundled crossing number $b c^{\circ}(G)$ of G is the minimum number of bundled crossings
over all possible bundlings
of all possible simple circular layouts of G.
Thm. Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.
resolves an open problem of [Alam et al. 2016]
Remark on simple vs. non-simple: consider $K_{3,3}$
Non-simple \rightsquigarrow orientable graph genus [Alam et al. 2016]
... more on this soon

Bundled Crossing Minimization

Def. For a given graph G the circular bundled crossing number $\mathrm{bc}^{\circ}(G)$ of G is the minimum number of bundled crossings over all possible bundlings of all possible simple circular layouts of G.
Thm. Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.
\longrightarrow resolves an open problem of [Alam et al. 2016]
Other results (not covered in this talk, see the paper!):

Bundled Crossing Minimization

Def. For a given graph G the circular bundled crossing number $b c^{\circ}(G)$ of G is the minimum number of bundled crossings over all possible bundlings of all possible simple circular layouts of G.

```
resolves open problem of
```

Thm. Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.
\longrightarrow resolves an open problem of
Other results (not covered in this talk, see the paper!):
Thm. For general layouts, on inputs (G, k), deciding whether G has a simple drawing with k bundled crossings is NPc. For non-simple, this is FPT in k (via genus).
Obs. For circular layouts, on inputs (G, k), deciding whether G has a (non-simple) circular drawing with k bundled crossings is FPT in k (via genus).

Structure of a drawing

Consider a drawing with k bundled crossings and observe that:

Structure of a drawing

Consider a drawing with k bundled crossings and observe that:

- At most k bundled crossings \Longrightarrow at most $4 k$ frame edges.

Structure of a drawing

- At most k bundled crossings \Longrightarrow at most $4 k$ frame edges.
- We can "lift" the drawing onto a surface of genus k

Structure of a drawing

- At most k bundled crossings \Longrightarrow at most $4 k$ frame edges.
- We can "lift" the drawing onto a surface of genus k

Structure of a drawing

Consider a drawing with k bundled crossings and observe that:

- At most k bundled crossings \Longrightarrow at most $4 k$ frame edges.
- We can "lift" the drawing onto a surface of genus k

Structure of a drawing

Consider a drawing with k bundled crossings and observe that:

- At most k bundled crossings \Longrightarrow at most $4 k$ frame edges.
- We can "lift" the drawing onto a surface of genus k
- and subdivide the surface into regions.

Structure of a drawing

Consider a drawing with k bundled crossings and observe that:

- At most k bundled crossings \Longrightarrow at most $4 k$ frame edges.
- We can "lift" the drawing onto a surface of genus k
- and subdivide the surface into regions.
- Other edges/vertices of the graph partitioned into these regions.

Structure of a drawing

Consider a drawing with k bundled crossings and observe that:

- At most k bundled crossings \Longrightarrow at most $4 k$ frame edges.
- We can "lift" the drawing onto a surface of genus k
- and subdivide the surface into regions.
- Other edges/vertices of the graph partitioned into these regions.
- The graph induced by edges inside a single region has a special outerplanar drawing.

Structure of a drawing

What if a region has
a bridge and a tunnel
corresponding to
the same bundled crossing?

- At most k bundled crossings \Longrightarrow at most $4 k$ frame edges.
- We can "lift" the drawing onto a surface of genus k
- and subdivide the surface into regions.
- Other edges/vertices of the graph partitioned into these regions.
- The graph induced by edges inside a single region has a special outerplanar drawing.

Structure of a drawing

What if a region has
a bridge and a tunnel
corresponding to
the same bundled crossing?
Lem. Each region is a topological disk.

- At most k bundled crossings \Longrightarrow at most $4 k$ frame edges.
- We can "lift" the drawing onto a surface of genus k
- and subdivide the surface into regions.
- Other edges/vertices of the graph partitioned into these regions.
- The graph induced by edges inside a single region has a special outerplanar drawing.

The Algorithm

Thm.

Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.

- Guess the drawing of at most $4 k$ frame edges and their bundling.

The Algorithm

Thm.

Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.

- Guess the drawing of at most $4 k$ frame edges and their bundling.
- Construct a surface of genus k and a subdivision into regions.

The Algorithm

Thm.

Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.

- Guess the drawing of at most $4 k$ frame edges and their bundling.
- Construct a surface of genus k and a subdivision into regions.
- Map the edges of the graph to the guessed frame edges.

The Algorithm

Thm.

Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.

- Guess the drawing of at most $4 k$ frame edges and their bundling.
- Construct a surface of genus k and a subdivision into regions.
- Map the edges of the graph to the guessed frame edges.
- Partition the edges and vertices into the regions.

The Algorithm

Thm.

Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.

- Guess the drawing of at most $4 k$ frame edges and their bundling.
- Construct a surface of genus k and a subdivision into regions.
- Map the edges of the graph to the guessed frame edges.
- Partition the edges and vertices into the regions.
- Test graphs in each region for a good outerplanar drawing.

The Algorithm

Thm.

Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.

- Guess the drawing of at most $4 k$ frame edges and their bundling.
- Construct a surface of genus k and a subdivision into regions.
- Map the edges of the graph to the guessed frame edges.
- Partition the edges and vertices into the regions.
- Test graphs in each region for a good outerplanar drawing.

The Algorithm

Thm.

Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.

But what is MSO_{2} again?

- Guess the drawing of at most $4 k$ frame edges and their bundling.
- Construct a surface of genus k and a subdivision into regions.
- Map the edges of the graph to the guessed frame edges.
- Partition the edges and vertices into the regions.
- Test graphs in each region for a good outerplanar drawing.

The Algorithm

Thm.

Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.

But what is MSO_{2} again?

- Guess the drawing of at most $4 k$ frame edges and their bundling.
- Construct a surface of genus k and a subdivision into regions.
- Map the edges of the graph to the guessed frame edges.
- Partition the edges and vertices into the regions.
- Test graphs in each region for a good outerplanar drawing.

Monadic Second Order Logic $\left(\mathrm{MSO}_{2}\right)$

$\operatorname{Partition}\left(E ; E_{0}, \ldots, E_{\gamma}\right)=$

$$
(\forall e \in E)\left[\left(\bigvee_{i=0}^{\gamma} e \in E_{i}\right) \wedge\left(\bigwedge_{i \neq j} \neg\left(e \in E_{i} \wedge e \in E_{j}\right)\right)\right]
$$

Monadic Second Order Logic $\left(\mathrm{MSO}_{2}\right)$

$\operatorname{Partition}\left(E ; E_{0}, \ldots, E_{\gamma}\right)=$

$$
(\forall e \in E)\left[\left(\bigvee_{i=0}^{\gamma} e \in E_{i}\right) \wedge\left(\bigwedge_{i \neq j} \neg\left(e \in E_{i} \wedge e \in E_{j}\right)\right)\right] .
$$

Thm (Courcelle): If a property P is expressed as $\varphi \in \mathrm{MSO}_{2}$, then for every graph G with treewidth at most t, P can be tested in time $O(f(t,|\varphi|)(n+m))$ for a computable function f.

Monadic Second Order Logic $\left(\mathrm{MSO}_{2}\right)$

$\operatorname{Partition}\left(E ; E_{0}, \ldots, E_{\gamma}\right)=$

$$
(\forall e \in E)\left[\left(\bigvee_{i=0}^{\gamma} e \in E_{i}\right) \wedge\left(\bigwedge_{i \neq j} \neg\left(e \in E_{i} \wedge e \in E_{j}\right)\right)\right] .
$$

Thm (Courcelle): If a property P is expressed as $\varphi \in \mathrm{MSO}_{2}$, then for every graph G with treewidth at most t, P can be tested in time $O(f(t,|\varphi|)(n+m))$ for a computable function f.

Monadic Second Order Logic $\left(\mathrm{MSO}_{2}\right)$

$\operatorname{Partition}\left(E ; E_{0}, \ldots, E_{\gamma}\right)=$

$$
(\forall e \in E)\left[\left(\bigvee_{i=0}^{\gamma} e \in E_{i}\right) \wedge\left(\bigwedge_{i \neq j} \neg\left(e \in E_{i} \wedge e \in E_{j}\right)\right)\right]
$$

Thm (Courcelle): If a property P is expressed as $\varphi \in \mathrm{MSO}_{2}$, then for every graph G with treewidth at most t, P can be tested in time $O(f(t,|\varphi|)(n+m))$ for a computable function f.
Since our regions induce outerplanar graphs, we have treewidth at most $8 k+2$ where k is the number of bundled crossings.

Monadic Second Order Logic $\left(\mathrm{MSO}_{2}\right)$

$\operatorname{Partition}\left(E ; E_{0}, \ldots, E_{\gamma}\right)=$

$$
(\forall e \in E)\left[\left(\bigvee_{i=0}^{\gamma} e \in E_{i}\right) \wedge\left(\bigwedge_{i \neq j} \neg\left(e \in E_{i} \wedge e \in E_{j}\right)\right)\right]
$$

Thm (Courcelle): If a property P is expressed as $\varphi \in \mathrm{MSO}_{2}$, then for every graph G with treewidth at most t, P can be tested in time $O(f(t,|\varphi|)(n+m))$ for a computable function f.

But, what about?

- Test graphs in each region for a good outerplanar drawing.

Monadic Second Order Logic $\left(\mathrm{MSO}_{2}\right)$

$\operatorname{Partition}\left(E ; E_{0}, \ldots, E_{\gamma}\right)=$

$$
(\forall e \in E)\left[\left(\bigvee_{i=0}^{\gamma} e \in E_{i}\right) \wedge\left(\bigwedge_{i \neq j} \neg\left(e \in E_{i} \wedge e \in E_{j}\right)\right)\right]
$$

Thm (Courcelle): If a property P is expressed as $\varphi \in \mathrm{MSO}_{2}$, then for every graph G with treewidth at most t, P can be tested in time $O(f(t,|\varphi|)(n+m))$ for a computable function f.

But, what about?

- Test graphs in each region for a good outerplanar drawing.

This can be stated in MSO_{2} via a mechanism of MSO-definition schemes, and the Backwards Translation Theorem [Courcelle, Engelfriet; 2012]

Monadic Second Order Logic $\left(\mathrm{MSO}_{2}\right)$

Theorem 7.10 (Backwards Translation Theorem) Let \mathcal{D} be a k-copying C_{r} MS-definition scheme of type $\mathcal{R} \rightarrow \mathcal{R}^{\prime}$ with set of parameters \mathcal{W}. Let \mathcal{X} be a finite set of set variables and $\mathcal{Y}=\left\{y_{1}, \ldots y_{n}\right\}$ be a set of first-order variables. For every $\beta \in \mathrm{C}_{r} \mathrm{MS}\left(\mathcal{R}^{\prime}, \mathcal{X} \cup \mathcal{Y}\right)$ and $\mathbf{i} \neq$ ne can construct a formula $\beta_{\mathbf{i}}^{\mathcal{D}} \in$ $\mathrm{C}_{r} \mathrm{MS}\left(\mathcal{R}, \mathcal{W} \cup \mathcal{X}^{(k)} \cup \mathcal{Y}\right)$ such that for $\delta T R^{\mathrm{c}}(\mathcal{R})$, every \mathcal{W}-assignment γ, every $\mathcal{X}^{(k)}$-assignment η, and every
$(S, \gamma \cup \eta \cup \mu) \models \beta_{\mathbf{i}}^{\mathcal{D}}$ if and
$\widehat{\mathcal{D}}(S, \gamma)$ is define
The quantifier-
This can be stated in MSO_{2} via a mechanism of MSO-definition schemes, and the Backwards Translation Theorem [Courcelle, Engelfriet; 2012]

Testing whether $b c^{\circ}=k$

Thm.

Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.

Runtime:

- Guess the drawing of at most $4 k$ frame edges and their bundling.
- Construct a surface of genus k and a subdivision into regions.
- Map the edges of the graph to the guessed frame edges.
- Partition the edges and vertices into the regions.
- Test graphs in each region for a good outerplanar drawing.

Testing whether $b c^{\circ}=k$

Thm.

Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.

Runtime:
$2^{O\left(k^{2}\right)}$

- Guess the drawing of at most $4 k$ frame edges and their bundling.
- Construct a surface of genus k and a subdivision into regions.
- Map the edges of the graph to the guessed frame edges.
- Partition the edges and vertices into the regions.
- Test graphs in each region for a good outerplanar drawing.

Testing whether $b c^{\circ}=k$

Thm.

Deciding whether $\mathrm{bc}^{\circ}(G)=k$ is FPT in k.

Runtime:
$2^{O\left(k^{2}\right) f(k)(|V|+|E|)}$

- Guess the drawing of at most $4 k$ frame edges and their bundling.
- Construct a surface of genus k and a subdivision into regions.
- Map the edges of the graph to the guessed frame edges.
- Partition the edges and vertices into the regions.
- Test graphs in each region for a good outerplanar drawing.

Testing whether $b c^{\circ}=k$

Recall that for correctness of the algorithm we need to show that

Thm. Each region is a topological disk.

- Guess the drawing of at most $4 k$ frame edges and their bundling.
- Construct a surface of genus k and a subdivision into regions.
- Map the edges of the graph to the guessed frame edges.
- Partition the edges and vertices into the regions. MSO_{2}
- Test graphs in each region for a good outerplanar drawing.

A region is a topological disk
Lem. Each region is a topological disk. Proof.

A region is a topological disk
Lem. Each region is a topological disk. Proof.

A region is a topological disk
Lem. Each region is a topological disk. Proof.

A region is a topological disk
Lem. Each region is a topological disk. Proof.

A region is a topological disk
Lem. Each region is a topological disk. Proof.

A region is a topological disk

Lem. Each region is a topological disk. Proof.

Stick to the right!

A region is a topological disk
Lem. Each region is a topological disk. Proof.

A region is a topological disk
Lem. Each region is a topological disk. Proof.

A region is a topological disk
Lem. Each region is a topological disk. Proof.

A region is a topological disk

Lem. Each region is a topological disk. Proof.

A region is a topological disk

Lem. Each region is a topological disk. Proof.

A region is a topological disk

Lem. Each region is a topological disk. Proof.

A region is a topological disk

Lem. Each region is a topological disk. Proof.

A region is a topological disk
Lem. Each region is a topological disk. Proof.

A region is a topological disk

Lem. Each region is a topological disk. Proof.

Cannot

名 be completed!
follows from [Arroyo
Bensmail, Richter:'2018]

A region is a topological disk

Lem. Each region is a topological disk. Proof.

Cannot

 be completed!follows from [Arroyo,
Bensmail, Richter; 2018]

A region is a topological disk

Lem. Each region is a topological disk. Proof.

Cannot

名be completed!
follows from [Arroyo,
Bensmail, Richter; 2018]

Open Questions

We have provided an FPT algorithm for deciding whether $b c^{\circ}(G)=k$.

Since our algorithm is based on MSO_{2} the runtime is

Open Questions

We have provided an FPT algorithm for deciding whether $\mathrm{bc}^{\circ}(G)=k$.

Since our algorithm is based on MSO_{2} the runtime is
鼯

Open Questions

We have provided an FPT algorithm for deciding whether $b c^{\circ}(G)=k$.

Since our algorithm is based on MSO_{2} the runtime is

Question 1

Is there a faster FPT algorithm for deciding whether $b c^{\circ}(G)=k$?

Open Questions

We have provided an FPT algorithm for deciding whether $b c^{\circ}(G)=k$.

Since our algorithm is based on MSO_{2} the runtime is

Question 1

Is there a faster FPT algorithm for deciding whether $b c^{\circ}(G)=k$?

Question 2
Is deciding whether $b c^{\circ}(G)=k$ NP-hard?

Open Questions

We have provided an FPT algorithm for deciding whether $b c^{\circ}(G)=k$.

Since our algorithm is based on MSO_{2} the runtime is

Question 1

Is there a faster FPT algorithm for deciding whether $b c^{\circ}(G)=k$?

Question 2

Is deciding whether $b c^{\circ}(G)=k$ NP-hard?
Question 3
Is bundle crossing min. also FPT for general simple layouts?

