Graph Drawing 2019 Průhonice, September 17-19

On the 2-Colored Crossing Number

Oswin Aichholzer ${ }^{1}$, Ruy Fabila-Monroy ${ }^{2}$,
Adrian Fuchs ${ }^{1}$, Carlos Hidalgo-Toscano ${ }^{2}$, Irene Parada ${ }^{1}$, Birgit Vogtenhuber ${ }^{1}$, and Francisco Zaragoza ${ }^{3}$
${ }^{1}$ Graz University of Technology, Austria
${ }^{2}$ Cinvestav, Mexico
${ }^{3}$ Universidad Autónoma Metropolitana, Mexico

Rectilinear Crossing Number

Given: (straight-line drawing D of) graph $G=(V, E)$.

Rectilinear Crossing Number

Given: (straight-line drawing D of) graph $G=(V, E)$.

- $\overline{\mathrm{cr}}(D):=$ number of crossings in (D, χ)

Rectilinear Crossing Number

Given: (straight-line drawing D of) graph $G=(V, E)$.

- $\overline{\mathrm{cr}}(D):=$ number of crossings in (D, χ)
- $\overline{\mathrm{cr}}(G):=\min _{D} \overline{\mathrm{cr}}(D)$

Rectilinear Crossing Number

Given: (straight-line drawing D of) graph $G=(V, E)$.

- $\overline{\mathrm{cr}}(D):=$ number of crossings in (D, χ)
- $\overline{\mathrm{cr}}(G):=\min _{D} \overline{\operatorname{cr}}(D)$

Rectilinear 2-Colored Crossing Number

Given: (straight-line drawing D of) graph $G=(V, E)$.

Rectilinear 2-Colored Crossing Number

Given: (straight-line drawing D of) graph $G=(V, E)$.

- 2-edge-coloring χ of G : one of 2 colors per edge

Rectilinear 2-Colored Crossing Number

Given: (straight-line drawing D of) graph $G=(V, E)$.

- 2-edge-coloring χ of G : one of 2 colors per edge

Rectilinear 2-Colored Crossing Number

Given: (straight-line drawing D of) graph $G=(V, E)$.

- 2-edge-coloring χ of G : one of 2 colors per edge
- $\overline{\mathrm{Cr}}_{2}(D, \chi):=$ number of monochromatic crossings in (D, χ)

Rectilinear 2-Colored Crossing Number

Given: (straight-line drawing D of) graph $G=(V, E)$.

- 2-edge-coloring χ of G : one of 2 colors per edge
- $\overline{\mathrm{Cr}}_{2}(D, \chi):=$ number of monochromatic crossings in (D, χ)

Rectilinear 2-Colored Crossing Number

Given: (straight-line drawing D of) graph $G=(V, E)$.

- 2-edge-coloring χ of G : one of 2 colors per edge
- $\overline{C r}_{2}(D, \chi):=$ number of monochromatic
crossings in (D, χ)
- $\overline{\mathrm{Cr}}_{2}(D):=\min _{\chi}{\overline{\operatorname{cr}_{2}}}_{2}(D, \chi)$

Rectilinear 2-Colored Crossing Number

Given: (straight-line drawing D of) graph $G=(V, E)$.

- 2-edge-coloring χ of G : one of 2 colors per edge
- $\overline{\mathrm{Cr}}_{2}(D, \chi):=$ number of monochromatic
crossings in (D, χ)
- $\overline{\mathrm{Cr}}_{2}(D):=\min _{\chi}{\overline{\operatorname{cr}_{2}}}_{2}(D, \chi)$
- $\overline{\mathrm{Cr}}_{2}(G):=\min _{D} \overline{\mathrm{Cr}}_{2}(D)$

Rectilinear 2-Colored Crossing Number

Given: (straight-line drawing D of) graph $G=(V, E)$.

- 2-edge-coloring χ of G : one of 2 colors per edge
- $\overline{\mathrm{Cr}}_{2}(D, \chi):=$ number of monochromatic crossings in (D, χ)
- $\overline{\mathrm{Cr}}_{2}(D):=\min _{\chi}{\overline{\operatorname{cr}_{2}}}_{2}(D, \chi)$
- $\overline{\mathrm{Cr}}_{2}(G):=\min _{D} \overline{\mathrm{Cr}}_{2}(D)$

Rectilinear 2-Colored Crossing Number

Given: (straight-line drawing D of) graph $G=(V, E)$.

- 2-edge-coloring χ of G : one of 2 colors per edge
- $\overline{\mathrm{Cr}}_{2}(D, \chi):=$ number of monochromatic crossings in (D, χ)
- $\overline{\mathrm{Cr}}_{2}(D):=\min _{\chi}{\overline{\operatorname{cr}_{2}}}_{2}(D, \chi)$
- $\overline{\mathrm{Cr}}_{2}(G):=\min _{D} \overline{\operatorname{cr}}_{2}(D)$
- Determining $\overline{\operatorname{cr}}_{2}(G)$ and
 even $\overline{\operatorname{cr}}_{2}(D)$ is NP-hard

Rectilinear 2-Colored Crossing Number

Given: (straight-line drawing D of) graph $G=(V, E)$.

- 2-edge-coloring χ of G : one of 2 colors per edge
- $\overline{\mathrm{Cr}}_{2}(D, \chi):=$ number of monochromatic crossings in (D, χ)
- $\overline{\operatorname{cr}}_{2}(D):=\min _{\chi}{\overline{\operatorname{cr}_{2}}}_{2}(D, \chi)$
- $\overline{\mathrm{Cr}}_{2}(G):=\min _{D} \overline{\operatorname{cr}}_{2}(D)$
- Determining $\overline{\operatorname{cr}}_{2}(G)$ and
 even $\overline{\mathrm{cr}}_{2}(D)$ is NP-hard
- Goal: find bounds on $\overline{\mathrm{Cr}}_{2}(G)$ and $\overline{\mathrm{Cr}}_{2}(D)$ for $G=K_{n}$.

Main Results

- Lower and upper bounds on ${\overline{\mathrm{Cr}_{2}}}_{2}\left(K_{n}\right)$:

$$
\frac{1}{33}\binom{n}{4}+\Theta\left(n^{3}\right)<\overline{\operatorname{cr}}_{2}\left(K_{n}\right)<0.11798016\binom{n}{4}+\Theta\left(n^{3}\right)
$$

Main Results

- Lower and upper bounds on $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$:

$$
\frac{1}{33}\binom{n}{4}+\Theta\left(n^{3}\right)<\overline{\operatorname{cr}}_{2}\left(K_{n}\right)<0.11798016\binom{n}{4}+\Theta\left(n^{3}\right)
$$

- Ratio between $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$ and $\overline{\mathrm{cr}}\left(K_{n}\right)$:

$$
\lim _{n \rightarrow \infty} \frac{\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)}{\overline{\mathrm{cr}}\left(K_{n}\right)}<0.31049652
$$

Main Results

- Lower and upper bounds on $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$:

$$
\frac{1}{33}\binom{n}{4}+\Theta\left(n^{3}\right)<\overline{\operatorname{cr}}_{2}\left(K_{n}\right)<0.11798016\binom{n}{4}+\Theta\left(n^{3}\right)
$$

- Ratio between $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$ and $\overline{\mathrm{cr}}\left(K_{n}\right)$:

$$
\lim _{n \rightarrow \infty} \frac{\overline{\operatorname{cr}}_{2}\left(K_{n}\right)}{\overline{\operatorname{cr}}\left(K_{n}\right)}<0.31049652
$$

- Ratio for any fixed straight-line drawing D of K_{n} with sufficiently large n :

$$
\frac{\overline{\mathrm{cr}}_{2}(D)}{\overline{\mathrm{cr}}(D)}<\frac{1}{2}-c \quad \text { for some const. } c>0
$$

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$

per original crossing: 16 crossings

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$

per original edge: 1 crossing

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$

except for matching edges

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$

incident edges: 2 additional crossings with matching edge

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$

incident edge pairs: 4 additional crossings

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$

opposite incident edge pairs: no additional crossings

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$

small edges: no crossings

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$

$\overline{\operatorname{cr}}\left(D^{\prime}\right)=\underbrace{16 \overline{\operatorname{cr}}(D)}_{\text {crossings in } D}+\underbrace{\binom{n}{2}-n}_{\text {edges in } D}+\sum_{p \in D} \underbrace{\left(4\binom{L(p)}{2}+4\binom{R(p)}{2}+2(L(p)+R(p))\right)}_{\text {edgepairs incident to } p \in D}$

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$

$\overline{\operatorname{cr}}\left(D^{\prime}\right)=\underbrace{16 \overline{\operatorname{cr}}(D)}_{\text {crossings in } D}+\underbrace{\binom{n}{2}-n}_{\text {edges in } D}+\sum_{p \in D} \underbrace{\left(4\binom{L(p)}{2}+4\binom{R(p)}{2}+2(L(p)+R(p))\right)}_{\text {edgepairs incident to } p \in D}$
- Best matching edges: half of the edges on each side

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$

$$
\begin{aligned}
& +\sum_{p \in D} 4\left(\binom{B_{l}(p)}{2}+\binom{R_{l}(p)}{2}+\binom{B_{r}(p)}{2}+\binom{R_{r}(p)}{2}\right) \\
& +\sum_{p \in D} 2\left(H_{l}(p)+H_{r}(p)\right) \quad \Leftarrow \quad H_{i} \in\left\{B_{i}, R_{i}\right\}
\end{aligned}
$$

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$ $\overline{\mathrm{Cr}}_{2}$ of D^{\prime} : independent of colors for small edges!

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$ $\overline{\mathrm{Cr}}_{2}$ of D^{\prime} : independent of colors for small edges!
- Best matching edges: half of the edges of each color on each side

$$
\begin{aligned}
&{\overline{\operatorname{cr}_{2}}\left(D^{\prime}, \chi^{\prime}\right)=} 16 \overline{\operatorname{cr}}_{2}(D, \chi)+\binom{n}{2}-n \\
&+\sum_{p \in D} 4\left(\binom{B_{l}(p)}{2}+\binom{R_{l}(p)}{2}+\binom{B_{r}(p)}{2}+\binom{R_{r}(p)}{2}\right) \\
&+\sum_{p \in D} 2\left(H_{l}(p)+H_{r}(p)\right) \Leftarrow H_{i} \in\left\{B_{i}, R_{i}\right\}
\end{aligned}
$$

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$ $\overline{\mathrm{Cr}}_{2}$ of D^{\prime} : independent of colors for small edges!
- Best matching edges: half of the edges of each color on each side \Leftarrow in general not possible!

$$
\begin{aligned}
\overline{\mathrm{cr}}_{2}\left(D^{\prime}, \chi^{\prime}\right)= & 16 \overline{\mathrm{cr}}_{2}(D, \chi)+\binom{n}{2}-n \\
& +\sum_{p \in D} 4\left(\binom{B_{l}(p)}{2}+\binom{R_{l}(p)}{2}+\binom{B_{r}(p)}{2}+\binom{R_{r}(p)}{2}\right) \\
& +\sum_{p \in D} 2\left(H_{l}(p)+H_{r}(p)\right) \Leftarrow H_{i} \in\left\{B_{i}, R_{i}\right\}
\end{aligned}
$$

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$ $\overline{\mathrm{Cr}}_{2}$ of D^{\prime} : independent of colors for small edges!
- Best matching edges: half of the edges of each color on each side \Leftarrow in general not possible!
- "Nice" matching edges:

$$
\begin{aligned}
\overline{\operatorname{cr}}_{2}\left(D^{\prime}, \chi^{\prime}\right)= & 16 \overline{\operatorname{cr}}_{2}(D, \chi)+\binom{n}{2}-n \\
& +\sum_{p \in D} 4\left(\binom{B_{l}(p)}{2}+\binom{R_{l}(p)}{2}+\binom{B_{r}(p)}{2}+\binom{R_{r}(p)}{2}\right) \\
& +\sum_{p \in D} 2\left(H_{l}(p)+H_{r}(p)\right) \quad \Leftarrow H_{i} \in\left\{B_{i}, R_{i}\right\}
\end{aligned}
$$

Duplication Process

- Duplication: drawing D of $K_{m} \longrightarrow$ drawing D^{\prime} of $K_{2 m}$ $\overline{\mathrm{Cr}}_{2}$ of D^{\prime} : independent of colors for small edges!
- Best matching edges: half of the edges of each color on each side \Leftarrow in general not possible!
- "Nice" matching edges:
- halve the larger color class at the point
- split the smaller color class as good as possible

Upper Bound for $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$

- Duplication: drawing D of $K_{m} \rightarrow$ drawing D^{\prime} of $K_{2 m}$

Upper Bound for $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$

- Duplication: drawing D of $K_{m} \rightarrow$ drawing D^{\prime} of $K_{2 m}$
- Matching for D^{\prime} :

Upper Bound for $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$

- Duplication: drawing D of $K_{m} \rightarrow$ drawing D^{\prime} of $K_{2 m}$
- Matching for D^{\prime} : for each $p \in D$, independently choose matching edges for p_{1}, p_{2} and the color of $p_{1} p_{2}$

Upper Bound for $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$

- Duplication: drawing D of $K_{m} \rightarrow$ drawing D^{\prime} of $K_{2 m}$
- Matching for D^{\prime} : for each $p \in D$, independently choose matching edges for p_{1}, p_{2} and the color of $p_{1} p_{2}$ choice depends on: $\left|R_{i}(p)\right|,\left|B_{i}(p)\right|, i \in\{l, r\}$, color of $p q$

Upper Bound for $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$

- Duplication: drawing D of $K_{m} \rightarrow$ drawing D^{\prime} of $K_{2 m}$
- Matching for D^{\prime} : for each $p \in D$, independently choose matching edges for p_{1}, p_{2} and the color of $p_{1} p_{2}$ choice depends on: $\left|R_{i}(p)\right|,\left|B_{i}(p)\right|, i \in\{l, r\}$, color of $p q$
- several cases, choices with good recursive behavior

Upper Bound for $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$

- Duplication: drawing D of $K_{m} \rightarrow$ drawing D^{\prime} of $K_{2 m}$
- Matching for D^{\prime} : for each $p \in D$, independently choose matching edges for p_{1}, p_{2} and the color of $p_{1} p_{2}$ choice depends on: $\left|R_{i}(p)\right|,\left|B_{i}(p)\right|, i \in\{l, r\}$, color of $p q$
- several cases, choices with good recursive behavior
- Repeated duplication: $D \rightarrow$ drawing D_{k} of $K_{2^{k} m}$

Upper Bound for $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$

- Duplication: drawing D of $K_{m} \rightarrow$ drawing D^{\prime} of $K_{2 m}$
- Matching for D^{\prime} : for each $p \in D$, independently choose matching edges for p_{1}, p_{2} and the color of $p_{1} p_{2}$ choice depends on: $\left|R_{i}(p)\right|,\left|B_{i}(p)\right|, i \in\{l, r\}$, color of $p q$
- several cases, choices with good recursive behavior
- Repeated duplication: $D \rightarrow$ drawing D_{k} of $K_{2^{k} m}$
- involved analysis + exact counting yields

$$
\overline{\mathrm{Cr}}_{2}\left(D_{k}, \chi_{k}\right)=\frac{24 A}{m^{4}}\binom{n}{4}+\Theta\left(n^{3}\right) \quad n=m 2^{k}
$$

(A : constant depending on D, χ, and the matching M)

Upper Bound for $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$

- Duplication: drawing D of $K_{m} \rightarrow$ drawing D^{\prime} of $K_{2 m}$
- Matching for D^{\prime} : for each $p \in D$, independently choose matching edges for p_{1}, p_{2} and the color of $p_{1} p_{2}$ choice depends on: $\left|R_{i}(p)\right|,\left|B_{i}(p)\right|, i \in\{l, r\}$, color of $p q$
- several cases, choices with good recursive behavior
- Repeated duplication: $D \rightarrow$ drawing D_{k} of $K_{2^{k} m}$
- involved analysis + exact counting yields

$$
\overline{\mathrm{Cr}}_{2}\left(D_{k}, \chi_{k}\right)=\frac{24 A}{m^{4}}\binom{n}{4}+\Theta\left(n^{3}\right) \quad n=m 2^{k}
$$

(A : constant depending on D, χ, and the matching M)

- Plugging in a good initial (D, χ, M) gives

$$
\overline{\operatorname{cr}}_{2}\left(K_{n}\right)<0.11798016\binom{n}{4}+\Theta\left(n^{3}\right)
$$

Upper Bound for $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$

- Duplication: drawing D of $K_{m} \rightarrow$ drawing D^{\prime} of $K_{2 m}$
- Matching for D^{\prime} : for each $p \in D$, independently choose matching edges for p_{1}, p_{2} and the color of $p_{1} p_{2}$ choice depends on: $\left|R_{i}(p)\right|,\left|B_{i}(p)\right|, i \in\{l, r\}$, color of $p q$
- several cases, choices with good recursive behavior
- Repeated duplication: $D \rightarrow$ drawing D_{k} of $K_{2^{k} m}$
- involved analysis + exact counting yields

$$
\overline{\mathrm{Cr}}_{2}\left(D_{k}, \chi_{k}\right)=\frac{24 A}{m^{4}}\binom{n}{4}+\Theta\left(n^{3}\right) \quad n=m 2^{k}
$$

(A : constant depending on D, χ, and the matching M)

- Plugging in a good initial (D, χ, M) gives

$$
\overline{\operatorname{cr}}_{2}\left(K_{n}\right)<0.11798016\binom{n}{4}+\Theta\left(n^{3}\right)
$$

Main Results

- Lower and upper bounds on $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$:

$$
\frac{1}{33}\binom{n}{4}+\Theta\left(n^{3}\right)<\overline{\operatorname{cr}}_{2}\left(K_{n}\right)<0.11798016\binom{n}{4}+\Theta\left(n^{3}\right)
$$

- Ratio between $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$ and $\overline{\mathrm{cr}}\left(K_{n}\right)$:

$$
\lim _{n \rightarrow \infty} \frac{\overline{\operatorname{cr}}_{2}\left(K_{n}\right)}{\overline{\operatorname{cr}}\left(K_{n}\right)}<0.31049652
$$

- Ratio for any fixed straight-line drawing D of K_{n} with sufficiently large n :

$$
\frac{\overline{\operatorname{cr}}_{2}(D)}{\overline{\operatorname{cr}}(D)}<\frac{1}{2}-c \quad \text { for some } c>0
$$

Open Problems

- What is the computational complexity of determinging $\overline{\mathrm{Cr}}_{2}(D)$ for a given straight-line drawing D of K_{n} ? \Leftrightarrow How fast can we solve max-cut on the segment intersection graph induced by D ?
- What can we say about the structure of point sets that minimize $\overline{\operatorname{cr}}_{2}\left(K_{n}\right)$?
- Is it true that the maximum for $\overline{\operatorname{cr}}_{2}(D) / \overline{\operatorname{cr}}(D)$ is uniquely obtained for point sets in convex position?

Open Problems

- What is the computational complexity of determinging $\overline{\mathrm{Cr}}_{2}(D)$ for a given straight-line drawing D of K_{n} ? \Leftrightarrow How fast can we solve max-cut on the segment intersection graph induced by D ?
- What can we say about the structure of point sets that minimize $\overline{\mathrm{Cr}}_{2}\left(K_{n}\right)$?
- Is it true that the maximum for $\overline{\operatorname{cr}}_{2}(D) / \overline{\operatorname{cr}}(D)$ is uniquely obtained for point sets in convex position?

Thank you for your attention!

