

Graph Drawing 2019 Průhonice, September 17-19

On the 2-Colored Crossing Number

Oswin Aichholzer¹, Ruy Fabila-Monroy², Adrian Fuchs¹, Carlos Hidalgo-Toscano², Irene Parada¹, Birgit Vogtenhuber¹, and Francisco Zaragoza³

¹ Graz University of Technology, Austria
² Cinvestav, Mexico

³ Universidad Autónoma Metropolitana, Mexico

Given: (straight-line drawing D of) graph G = (V, E).

• $\overline{\operatorname{cr}}(D) :=$ number of crossings in (D, χ)

- $\overline{\operatorname{cr}}(D) :=$ number of crossings in (D, χ)
- $\overline{\operatorname{cr}}(G) := \min_D \overline{\operatorname{cr}}(D)$

- $\overline{\operatorname{cr}}(D) :=$ number of crossings in (D, χ)
- $\overline{\operatorname{cr}}(G) := \min_D \overline{\operatorname{cr}}(D)$

Given: (straight-line drawing D of) graph G = (V, E).

• 2-edge-coloring χ of G: one of 2 colors per edge

Given: (straight-line drawing D of) graph G = (V, E).

• 2-edge-coloring χ of G: one of 2 colors per edge

- 2-edge-coloring χ of G: one of 2 colors per edge
- $\overline{\operatorname{cr}}_2(D,\chi) :=$ number of monochromatic crossings in (D,χ)

- 2-edge-coloring χ of G: one of 2 colors per edge
- $\overline{\operatorname{cr}}_2(D,\chi) :=$ number of monochromatic crossings in (D,χ)

- 2-edge-coloring χ of G: one of 2 colors per edge
- $\overline{\operatorname{cr}}_2(D,\chi) :=$ number of monochromatic crossings in (D,χ)

•
$$\overline{\operatorname{cr}}_2(D) := \min_{\chi} \overline{\operatorname{cr}}_2(D,\chi)$$

Given: (straight-line drawing D of) graph G = (V, E).

- 2-edge-coloring χ of G: one of 2 colors per edge
- $\overline{\operatorname{cr}}_2(D,\chi) :=$ number of monochromatic crossings in (D,χ)

•
$$\overline{\operatorname{cr}}_2(D) := \min_{\chi} \overline{\operatorname{cr}}_2(D,\chi)$$

• $\overline{\operatorname{cr}}_2(G) := \min_D \overline{\operatorname{cr}}_2(D)$

Given: (straight-line drawing D of) graph G = (V, E).

- 2-edge-coloring χ of G: one of 2 colors per edge
- $\overline{\operatorname{cr}}_2(D,\chi) :=$ number of monochromatic crossings in (D,χ)

•
$$\overline{\operatorname{cr}}_2(D) := \min_{\chi} \overline{\operatorname{cr}}_2(D,\chi)$$

• $\overline{\operatorname{cr}}_2(G) := \min_D \overline{\operatorname{cr}}_2(D)$

- 2-edge-coloring χ of G: one of 2 colors per edge
- $\overline{\operatorname{cr}}_2(D,\chi) :=$ number of monochromatic crossings in (D,χ)
- $\overline{\operatorname{cr}}_2(D) := \min_{\chi} \overline{\operatorname{cr}}_2(D,\chi)$
- $\overline{\operatorname{cr}}_2(G) := \min_D \overline{\operatorname{cr}}_2(D)$
- Determining $\overline{\mathrm{cr}}_2(G)$ and even $\overline{\mathrm{cr}}_2(D)$ is NP-hard

- 2-edge-coloring χ of G: one of 2 colors per edge
- $\overline{\operatorname{cr}}_2(D,\chi) :=$ number of monochromatic crossings in (D,χ)
- $\overline{\operatorname{cr}}_2(D) := \min_{\chi} \overline{\operatorname{cr}}_2(D,\chi)$
- $\overline{\operatorname{cr}}_2(G) := \min_D \overline{\operatorname{cr}}_2(D)$
- Determining $\overline{\mathrm{cr}}_2(G)$ and even $\overline{\mathrm{cr}}_2(D)$ is NP-hard
- Goal: find bounds on $\overline{\operatorname{cr}}_2(G)$ and $\overline{\operatorname{cr}}_2(D)$ for $G = K_n$.

Main Results

• Lower and upper bounds on $\overline{\operatorname{cr}}_2(K_n)$:

$$\frac{1}{33}\binom{n}{4} + \Theta(n^3) < \overline{\operatorname{cr}}_2(K_n) < 0.11798016\binom{n}{4} + \Theta(n^3)$$

Main Results

• Lower and upper bounds on $\overline{\operatorname{cr}}_2(K_n)$:

$$\frac{1}{33} \binom{n}{4} + \Theta(n^3) < \overline{\mathrm{cr}}_2(K_n) < 0.11798016 \binom{n}{4} + \Theta(n^3)$$

• Ratio between $\overline{\operatorname{cr}}_2(K_n)$ and $\overline{\operatorname{cr}}(K_n)$:

$$\lim_{n \to \infty} \frac{\overline{\mathrm{cr}}_2(K_n)}{\overline{\mathrm{cr}}(K_n)} < 0.31049652$$

Main Results

• Lower and upper bounds on $\overline{\operatorname{cr}}_2(K_n)$:

$$\frac{1}{33} \binom{n}{4} + \Theta(n^3) < \overline{\mathrm{cr}}_2(K_n) < 0.11798016 \binom{n}{4} + \Theta(n^3)$$

• Ratio between $\overline{\operatorname{cr}}_2(K_n)$ and $\overline{\operatorname{cr}}(K_n)$:

$$\lim_{n \to \infty} \frac{\overline{\operatorname{cr}}_2(K_n)}{\overline{\operatorname{cr}}(K_n)} < 0.31049652$$

• Ratio for any fixed straight-line drawing D of K_n with sufficiently large n:

$$\frac{\overline{\mathrm{cr}}_2(D)}{\overline{\mathrm{cr}}(D)} < \frac{1}{2} - c \quad \text{ for some const. } c > 0$$

• Duplication: drawing D of $K_m \longrightarrow \text{drawing } D'$ of K_{2m}

per original crossing: 16 crossings

• Duplication: drawing D of $K_m \longrightarrow \text{drawing } D'$ of K_{2m}

per original edge: 1 crossing

• Duplication: drawing D of $K_m \longrightarrow \text{drawing } D'$ of K_{2m}

except for matching edges

• Duplication: drawing D of $K_m \longrightarrow \text{drawing } D'$ of K_{2m}

incident edges: 2 additional crossings with matching edge

• Duplication: drawing D of $K_m \longrightarrow \text{drawing } D'$ of K_{2m}

incident edge pairs: 4 additional crossings

• Duplication: drawing D of $K_m \longrightarrow \text{drawing } D'$ of K_{2m}

opposite incident edge pairs: no additional crossings

• Duplication: drawing D of $K_m \longrightarrow \text{drawing } D'$ of K_{2m}

small edges: no crossings

• Duplication: drawing D of $K_m \longrightarrow$ drawing D' of K_{2m} $\overline{\operatorname{cr}}_2$ of D': independent of colors for small edges!

- Duplication: drawing D of $K_m \longrightarrow$ drawing D' of K_{2m} $\overline{\operatorname{cr}}_2$ of D': independent of colors for small edges!
- Best matching edges: half of the edges of each color on each side

$$\overline{\operatorname{cr}}_{2}(D',\chi') = 16\overline{\operatorname{cr}}_{2}(D,\chi) + {\binom{n}{2}} - n$$

$$+ \sum_{p \in D} 4\left({\binom{B_{l}(p)}{2}} + {\binom{R_{l}(p)}{2}} + {\binom{B_{r}(p)}{2}} + {\binom{R_{r}(p)}{2}} \right)$$

$$+ \sum_{p \in D} 2\left(H_{l}(p) + H_{r}(p)\right) \quad \Leftarrow \quad H_{i} \in \{B_{i}, R_{i}\}$$

- Duplication: drawing D of $K_m \longrightarrow$ drawing D' of K_{2m} $\overline{\operatorname{cr}}_2$ of D': independent of colors for small edges!

$$\overline{\operatorname{cr}}_{2}(D',\chi') = 16\overline{\operatorname{cr}}_{2}(D,\chi) + {\binom{n}{2}} - n$$

$$+ \sum_{p \in D} 4\left({\binom{B_{l}(p)}{2}} + {\binom{R_{l}(p)}{2}} + {\binom{B_{r}(p)}{2}} + {\binom{R_{r}(p)}{2}} \right)$$

$$+ \sum_{p \in D} 2\left(H_{l}(p) + H_{r}(p)\right) \quad \Leftarrow \quad H_{i} \in \{B_{i}, R_{i}\}$$

Duplication Process

- Duplication: drawing D of $K_m \longrightarrow$ drawing D' of K_{2m} $\overline{\operatorname{cr}}_2$ of D': independent of colors for small edges!
- "Nice" matching edges:

$$\overline{\operatorname{cr}}_{2}(D',\chi') = 16\overline{\operatorname{cr}}_{2}(D,\chi) + {\binom{n}{2}} - n$$

$$+ \sum_{p \in D} 4\left({\binom{B_{l}(p)}{2}} + {\binom{R_{l}(p)}{2}} + {\binom{B_{r}(p)}{2}} + {\binom{R_{r}(p)}{2}} \right)$$

$$+ \sum_{p \in D} 2\left(H_{l}(p) + H_{r}(p)\right) \quad \Leftarrow \quad H_{i} \in \{B_{i}, R_{i}\}$$

Duplication Process

- Duplication: drawing D of $K_m \longrightarrow$ drawing D' of K_{2m} $\overline{\operatorname{cr}}_2$ of D': independent of colors for small edges!
- "Nice" matching edges:
 - ► halve the larger color class at the point
 - ► split the smaller color class as good as possible

• Duplication: drawing D of $K_m \to \text{drawing } D'$ of K_{2m}

- Duplication: drawing D of $K_m \to \text{drawing } D'$ of K_{2m}
- Matching for D':

- Duplication: drawing D of $K_m \to \text{drawing } D'$ of K_{2m}
- Matching for D': for each $p \in D$, independently choose matching edges for p_1, p_2 and the color of p_1p_2

- Duplication: drawing D of $K_m \to \text{drawing } D'$ of K_{2m}
- Matching for D': for each p ∈ D, independently choose matching edges for p₁, p₂ and the color of p₁p₂ choice depends on: |R_i(p)|, |B_i(p)|, i ∈ {l,r}, color of pq

- Duplication: drawing D of $K_m \to \text{drawing } D'$ of K_{2m}
- Matching for D': for each $p \in D$, independently choose matching edges for p_1, p_2 and the color of p_1p_2 choice depends on: $|R_i(p)|$, $|B_i(p)|$, $i \in \{l, r\}$, color of pq
 - several cases, choices with good recursive behavior

- Duplication: drawing D of $K_m \to \text{drawing } D'$ of K_{2m}
- Matching for D': for each p ∈ D, independently choose matching edges for p₁, p₂ and the color of p₁p₂ choice depends on: |R_i(p)|, |B_i(p)|, i ∈ {l, r}, color of pq
 several cases, choices with good recursive behavior
 - $\mathsf{D}_{\mathsf{opot}} \to \mathsf{d}_{\mathsf{op}} \to \mathsf{$
- Repeated duplication: $D \rightarrow \text{drawing } D_k \text{ of } K_{2^k m}$

- Duplication: drawing D of $K_m \to \text{drawing } D'$ of K_{2m}
- Matching for D': for each p ∈ D, independently choose matching edges for p₁, p₂ and the color of p₁p₂ choice depends on: |R_i(p)|, |B_i(p)|, i ∈ {l, r}, color of pq
 several cases, choices with good recursive behavior
- Repeated duplication: $D \rightarrow \text{drawing } D_k \text{ of } K_{2^k m}$
 - ► involved analysis + exact counting yields $\overline{\operatorname{cr}}_2(D_k, \chi_k) = \frac{24A}{m^4} \binom{n}{4} + \Theta(n^3) \qquad n = m \, 2^k$ (A: constant depending on D, χ , and the matching M)

- Duplication: drawing D of $K_m \to \text{drawing } D'$ of K_{2m}
- Matching for D': for each p ∈ D, independently choose matching edges for p₁, p₂ and the color of p₁p₂ choice depends on: |R_i(p)|, |B_i(p)|, i ∈ {l, r}, color of pq
 several cases, choices with good recursive behavior
- Repeated duplication: $D \rightarrow \text{drawing } D_k \text{ of } K_{2^k m}$
 - involved analysis + exact counting yields $\overline{\operatorname{cr}}_2(D_k, \chi_k) = \frac{24A}{m^4} {n \choose 4} + \Theta(n^3) \qquad n = m \, 2^k$ (A: constant depending on D, χ , and the matching M)
- Plugging in a good initial (D, χ, M) gives $\overline{\mathrm{cr}}_2(K_n) < 0.11798016 \binom{n}{4} + \Theta(n^3)$

- Duplication: drawing D of $K_m \to \text{drawing } D'$ of K_{2m}
- Matching for D': for each p ∈ D, independently choose matching edges for p₁, p₂ and the color of p₁p₂ choice depends on: |R_i(p)|, |B_i(p)|, i ∈ {l, r}, color of pq
 several cases, choices with good recursive behavior
- Repeated duplication: $D \rightarrow \text{drawing } D_k \text{ of } K_{2^k m}$
 - involved analysis + exact counting yields $\overline{\operatorname{cr}}_2(D_k, \chi_k) = \frac{24A}{m^4} {n \choose 4} + \Theta(n^3) \qquad n = m \, 2^k$ (A: constant depending on D, χ , and the matching M)
- Plugging in a good initial (D, χ, M) gives $\overline{\mathrm{cr}}_2(K_n) < 0.11798016 \binom{n}{4} + \Theta(n^3)$

Main Results

• Lower and upper bounds on $\overline{\operatorname{cr}}_2(K_n)$:

$$\frac{1}{33} \binom{n}{4} + \Theta(n^3) < \overline{\mathrm{cr}}_2(K_n) < 0.11798016 \binom{n}{4} + \Theta(n^3)$$

• Ratio between $\overline{\operatorname{cr}}_2(K_n)$ and $\overline{\operatorname{cr}}(K_n)$:

$$\lim_{n \to \infty} \frac{\overline{\operatorname{cr}}_2(K_n)}{\overline{\operatorname{cr}}(K_n)} < 0.31049652$$

• Ratio for any fixed straight-line drawing D of K_n with sufficiently large n:

$$\frac{\overline{\mathrm{cr}}_2(D)}{\overline{\mathrm{cr}}(D)} < \frac{1}{2} - c \quad \text{ for some } c > 0$$

Open Problems

- What can we say about the structure of point sets that minimize $\overline{\mathrm{cr}}_2(K_n)$?
- Is it true that the maximum for $\overline{cr}_2(D)/\overline{cr}(D)$ is uniquely obtained for point sets in convex position?

Open Problems

- What can we say about the structure of point sets that minimize $\overline{\mathrm{cr}}_2(K_n)$?
- Is it true that the maximum for $\overline{cr}_2(D)/\overline{cr}(D)$ is uniquely obtained for point sets in convex position?

Thank you for your attention!