Minimal Representations of Order Types by Geometric Graphs

Aichholzer ${ }^{1}$, Balko ${ }^{2}$, Hoffmann ${ }^{3}$, Kynčl ${ }^{2}$, Mulzer ${ }^{4}$, Parada 1, Pilz 1,3, Scheucher ${ }^{5}$, Valtr ${ }^{2}$, Vogtenhuber ${ }^{1}$, and Welzl ${ }^{3}$

1 Graz University of Technology
2 Charles University, Prague
3 ETH Zürich
4 FU Berlin
5 TU Berlin

Combinatorics of Point Sets

Infinite number of point sets \Rightarrow Finite number classes

Combinatorics of Point Sets

Infinite number of point sets \Rightarrow Finite number classes

Combinatorics of Point Sets

Infinite number of point sets \Rightarrow Finite number classes

Combinatorics of Point Sets

Infinite number of point sets \Rightarrow Finite number classes

Combinatorics of Point Sets

Infinite number of point sets \Rightarrow Finite number classes

Order Types

Order types are the equivalence classes of point sets in the plane with respect to their triple-orientations.

Triple orientations: clockwise, counter clockwise, collinear

Order Types

Order types are the equivalence classes of point sets in the plane with respect to their triple-orientations.

We can determine whether two edges cross from the triple orientations

> No crossing:

Order Types

Order types are the equivalence classes of point sets in the plane with respect to their triple-orientations.

Order Types

Order types are the equivalence classes of point sets in the plane with respect to their triple-orientations.

Order Types

Order types are the equivalence classes of point sets in the plane with respect to their triple-orientations.

$$
n=3: \quad n=4:
$$

n	3	4	5	6	7	8	9	10	11
OT	1	2	3	16	135	3315	158817	14309547	2334512907

Nr. of order types: $n^{4 n+O(n / \log n)}$ [Goodman \& Pollack '86]

Representing Point Sets / Order Types

- Triple orientations

Representing Point Sets / Order Types

- Triple orientations

Representing Point Sets / Order Types

- Triple orientations
- Explicit coordinates

$$
\begin{aligned}
& 01607359 \\
& 17686530 \\
& 23384960 \\
& 25926679 \\
& 28804320 \\
& 29602520 \\
& 29605759 \\
& 39555593 \\
& 42396383 \\
& 57597359
\end{aligned}
$$

Representing Point Sets / Order Types

- Triple orientations
- Explicit coordinates

01607359
17686530
23384960
25926679
28804320
29602520
29605759
39555593
42396383
57597359

Representing Point Sets / Order Types

- Triple orientations
- Explicit coordinates
- Figure of the point set

0	0	
	0	0
	0	

Representing Point Sets / Order Types

- Triple orientations
- Explicit coordinates
- Figure of the point set O 0

Representing Point Sets / Order Types

- Triple orientations
- Explicit coordinates
- Figure of the point set
©

0

Representing Point Sets / Order Types

- Triple orientations
- Explicit coordinates
- Figure of the point set
- + spanned lines/segments

Complete geometric graph: vertices mapped points, edges drawn as straight-line segments.

Representing Point Sets / Order Types

- Triple orientations
- Explicit coordinates
- Figure of the point set
- + spanned lines/segments

Complete geometric graph: vertices mapped points, edges drawn as straight-line segments.

Representing Point Sets / Order Types

- Triple orientations
- Explicit coordinates
- Figure of the point set
- + spanned lines/segments
- Points + non-redundant edges

Representing Point Sets / Order Types

- Triple orientations
- Explicit coordinates
- Figure of the point set
- + spanned lines/segments
- Points + non-redundant edges

15 edges drawn (total: $45=\binom{10}{2}$)

Representing Point Sets / Order Types

- Triple orientations
- Explicit coordinates
- Figure of the point set
- + spanned lines/segments
- Points + non-redundant edges

15 edges drawn (total: $45=\binom{10}{2}$)

Geometric Graphs Supporting Point Sets

We consider "topology-preserving deformations".

A geometric graph G supports a set S of points if every "continuous deformation" that

- keeps edges straight and
- allows at most 3 points to be collinear at the same time also preserves the order type of the vertex set.

crossing fixed, i.e., convex position

Geometric Graphs Supporting Point Sets

We consider "topology-preserving deformations".

A geometric graph G supports a set S of points if every "continuous deformation" that

- keeps edges straight and
- allows at most 3 points to be collinear at the same time also preserves the order type of the vertex set.

no such continuous deformation

Geometric Graphs Supporting Point Sets

We consider "topology-preserving deformations".

A geometric graph G supports a set S of points if every ambient isotopy that

- keeps edges straight and
- allows at most 3 points to be collinear at the same time also preserves the order type of the vertex set.

An ambient isotopy of the real plane is a continuous map $f: \mathbb{R}^{2} \times[0,1] \rightarrow \mathbb{R}^{2}$ such that $f(\cdot, t)$ is homeomorphism for all $t \in[0,1]$ and $f(\cdot, 0)=I d$.

Geometric Graphs Supporting Point Sets

We consider "topology-preserving deformations".

A geometric graph G supports a set S of points if every ambient isotopy that

- keeps edges straight and
- allows at most 3 points to be collinear at the same time also preserves the order type of the vertex set.

An ambient isotopy of the real plane is a continuous map $f: \mathbb{R}^{2} \times[0,1] \rightarrow \mathbb{R}^{2}$ such that $f(\cdot, t)$ is homeomorphism for all $t \in[0,1]$ and $f(\cdot, 0)=I d$.

Every complete geometric graph is supporting.

Exit Edges: Definition

S set of $n \geq 4$ points in general position (no 3 collinear).

The edge $a b$ is an exit edge with witness c if there is no point $p \in S$ such that the line $\overline{a p}$ separates b from c or the line $\overline{b p}$ separates a from c.

Exit Edges: Definition

S set of $n \geq 4$ points in general position (no 3 collinear).

The edge $a b$ is an exit edge with witness c if there is no point $p \in S$ such that the line $\overline{a p}$ separates b from c or the line $\overline{b p}$ separates a from c.

Exit Edges: Definition

S set of $n \geq 4$ points in general position (no 3 collinear).

The edge $a b$ is an exit edge with witness c if there is no point $p \in S$ such that the line $\overline{a p}$ separates b from c or the line $\overline{b p}$ separates a from c.

Exit Edges: Alternative Characterization

The edge $a b$ is not an exit edge if and only if:

- $a b$ external \& incident to convex 4-hole or
- $a b$ internal \& incident to general 4-hole on each side, with the reflex angle (if any) incient to $a b$.

Exit Edges: Small Point Sets

Exit Edges: Small Point Sets

$$
n=4:
$$

$n=5:$

Exit Edges: Small Point Sets

$$
n=6
$$

Exit Graph Is Supporting

Let $S(t)$ be a continuous deformation of S at time t.
Let (a, b, c) be the first triple to become collinear, at $t_{0}>0$.
If c lies on the segment $a b$ in $S\left(t_{0}\right)$,
then $a b$ is an exit edge in $S(0)$ with witness c.

Exit Graph Is Supporting

Let $S(t)$ be a continuous deformation of S at time t.
Let (a, b, c) be the first triple to become collinear, at $t_{0}>0$.
If c lies on the segment $a b$ in $S\left(t_{0}\right)$,
then $a b$ is an exit edge in $S(0)$ with witness c.
The graph of exit graph (whose edges are the exit edges) of every point set is supporting.

Exit Edges: Observations

It is not always possible to make the witness c reach the corresponding exit edge $a b$.

Exit Edges: Observations

Exit edges are not necessary in a supporting graph.

Duality

$$
\text { (E.g.) } \quad p=(a, b)
$$

$$
p^{*}:=y=a x-b
$$

Duality

$$
\text { (E.g.) } \quad p=(a, b)
$$

$$
p^{*}:=y=a x-b
$$

The edge $a b$ is an exit edge with witness point c in S if and only if the lines a^{*}, b^{*}, and c^{*} bound an unmarked triangular cell in S^{*} with c^{*} being the witness line and $\overline{a b}^{*}$ ($=a^{*} \cap b^{*}$) being the exit vertex.

Exit Edges: Bounds

Lower Bound: There are at least $\frac{3 n-7}{5}$ exit edges.

Exit Edges: Bounds

Lower Bound: There are at least $\frac{3 n-7}{5}$ exit edges.
Construction with $n-3$ exit edges.

Exit Edges: Bounds

Lower Bound: There are at least $\frac{3 n-7}{5}$ exit edges.
Construction with $n-3$ exit edges.
Upper Bound: There are at most $\frac{n(n-1)}{3}$ exit edges.
From the upper bound on the number of triangular cells in line arrangements [Roudneff '72].

Exit Edges: Bounds

Lower Bound: There are at least $\frac{3 n-7}{5}$ exit edges.
Construction with $n-3$ exit edges.
Upper Bound: There are at most $\frac{n(n-1)}{3}$ exit edges.
From the upper bound on the number of triangular cells in line arrangements [Roudneff '72].
This bound on triangular cells was shown tight for infinitely many values of n [Harborth '85] and [Roudneff '86].

Exit Edges: Bounds

Lower Bound: There are at least $\frac{3 n-7}{5}$ exit edges.
Construction with $n-3$ exit edges.
Upper Bound: There are at most $\frac{n(n-1)}{3}$ exit edges.
From the upper bound on the number of triangular cells in line arrangements [Roudneff '72].
This bound on triangular cells was shown tight for infinitely many values of n [Harborth '85] and [Roudneff '86].
\Rightarrow Construction with $\Theta\left(n^{2}\right)$ exit edges.

Different Order Type, Same Exit Triples

Even if we are given all the exit edges and their witnesses (in the dual, having all triangles and their orientations), we cannot always infer the order type.

Construction based on an example in [Felsner \& Weil '00].

Different Order Type, Same Exit Triples

Even if we are given all the exit edges and their witnesses (in the dual, having all triangles and their orientations), we cannot always infer the order type.

Construction based on an example in [Felsner \& Weil '00].

Different Order Type, Same Exit Triples

Different Order Type, Same Exit Triples

Conclusions

- Exit edges are useful for representing order types: they are supporting, have a natural dual representation, and can be computed efficiently.
- However, not all of them might be necessary.
- Open: we conjecture that graphs based on exit edges are not only supporting but determine the order type.

Conclusions

- Exit edges are useful for representing order types: they are supporting, have a natural dual representation, and can be computed efficiently.
- However, not all of them might be necessary.
- Open: we conjecture that graphs based on exit edges are not only supporting but determine the order type.

Thank you!

