
Luca Castelli Aleardi

sept. 18th,
Graph Drawing 2019

v0 v1

v2

Balanced Schnyder woods for planar triangulations:
an experimental study with applications to graph

drawing and graph separators

Real-world graphs are very regular and far from random or pathological cases
regularity measure: we use d6, the proportion of degree 6 vertices

Planar graphs are ubiquitous
(from computational geometry to computer graphics, geometric processing, ...)

GIS Technology

David statue (Stanford’s Digital
Michelangelo Project, 2000)

Delaunay triangulation

3D reconstruction

geometric modeling

Delaunay triangulation

d6 ≈ 0.28d6 ≈ 0.11 d6 ≈ 0.99d6 ≈ 0.50 d6 ≈ 0.82

random planar triang.

Kuratowski theorem (1930) (cfr Wagner’s theorem, 1937)
• G contains neither K5 nor K3,3 as minors

Schnyder woods (’89)
• planarity criterion via dimension of partial orders:
dim(G) ≤ 3
• linear-time grid drawing, with O(n)×O(n) resolution

4 −1 . . . 0

−1

0

5

. . .

3

. . .

. . .

. . .

. . .

. . .

. . .

LG[i, k] ={−AG[i, j]

deg(vi)

Every planar graph with n vertices is
isomorphic to the intersection graph of n
disks in the plane.

Thm (Koebe-Andreev-Thurston)
Thm (Colin de Verdière, 1990) Colin de Verdiere invariant
(multiplicity of λ2 eigenvalue of a generalized laplacian)
• µ(G) ≤ 3

Thm (Tutte barycentric method, 1963)

Every 3-connected planar graph G admits a convex
representation in R2.

v0 v1

v2

Some facts about planar graphs
(”As I have known them”)

Schnyder woods
(quick overview)

v0 v1

v2

3-connected planar graphs
[Felsner ’01]

Planar triangulations
[Schnyder ’90]

toroidal triangulations
[Goncalves Lévêque, ’14]

genus g triangulations
[Castelli Aleardi Fusy Lewiner, ’08]

Schnyder woods: (planar) definition

v0 v1

n nodes

v2

ii) colors and orientations around each inner node
must respect the local Schnyder condition

i) edge are colored and oriented in such a
way that each inner nodes has exaclty one
outgoing edge of each color

A Schnyder wood of a (rooted) planar
triangulation is partition of all inner edges
into three sets T0, T1 and T2, s.t.

[Schnyder ’90]

rooted triangulation on

v0

v2

v1

T0, T1 and T2 are
vertex spanning trees

Def

Looking for ”nice” Schnyder woods

Egalitarian orientations:
[Borradaile et al. ’17]

Counting Schnyder woods:

[Bonichon ’05]

[Felsner Zickfeld ’08] 2.37n ≤ max |SW (T)| ≤ 3.56n
T ∈ Tn

Tn := class of planar triangulations of size n

SW (T) := set of all Schnyder woods of the triangulation T

(there are an exponential number)

(count of Schnyder woods of a fixed triangulation)

≈ 16n# Schnyder woods of triangulations of size n:

planar triangulations of size n: |Tn| ≈ 23.2451

(only for unconstrained orientations)

Goal: find an edge orientation that minimizes the lexicographic order of indegrees
(or minimize maximum indegree)

”find an orientation s. t. no vertex is unfairly hit with too many arcs directed into it”

Balanced Schnyder woods

v0 v1

v2

A Schnyder wood is balanced if most vertices have a small defect

balanced vertex

Def

balanced vertex unbalanced vertices

perfectly balanced well balanced strongly unbalanced

δ(v) = 1 δ(v) = (3− 0)− 1 = 2

δ(v) :=
max indegi(v)−min indegi(v)

max indegi(v)−min indegi(v)− 1

if degree(v) = 3k

otherwwise
{

δ(v) = 0 δ(v) = (2−1)−1 = 0

i ∈ {0, 1, 2} i ∈ {0, 1, 2}

i ∈ {0, 1, 2} i ∈ {0, 1, 2}

vertex defect

indegi(v) := #incoming edges of color i

Computing balanced Schnyder woods
Proportion of balanced vertices with our heuristic

minimal Schnyder wood

(d6 := proportion of
degree 6 vertices)

well balanced

strongly unbalanced

balancedSchnyderWood(T , (v0, v1, v2), k)

B = {v0, v1, v2} // initialization

while(|B| 6= {v0, v1}) {

}

let M be the largest index s.t. QM 6= ∅

Q0 = ∅, Q1 = ∅, . . . Qk−1 = ∅ // queue initialization

Q0.addLast(v2)

let v = QM .poll()

if(v ∈ B and v is free) {

T = new int[n] // priority array

}

let {vl, vj1 , . . . vjt , vr} be the neighbors of v on B

colorOrient(v)

conquer(v) // remove v from B

T [vl] + +, T [vr] + + // increase priority

Qmax(k−1,T [vl])
.addLast(vl)

Q0.addLast(vj1), . . . , Q0.addLast(vjt)

Qmax(k−1,T [vr]).addLast(vr)

priority driven vertex conquest:
remove first boundary vertices with
higher number of ingoing edges

Incremental vertex shelling
(Brehm’s diploma thesis)

Layout quality for Schnyder drawings
unbalanced

well balanced (our heuristic)

el
ed
ge

le
n
gt
h
m
et
ri
c

(higher values are better)

δavg :=
1
n

∑
v δ(v) (average vertex defect)

sphere12k
horse
Egea

el := 1 −
(

1
|E|
∑

e∈E
|l(e)−lavg|

max(lavg,lmax−lavg)

)
l(e) := edge length of e

average percent deviation of edge length

high values indicates more
uniform edge length

(Fowler and Kobourov, 2012)

From Schnyder woods to cycle separators

Boundary size Separator balance

Egea

δ0 = 0.42

δavg = 1.18

|S| = 0.96
√
m

horse

δ0 = 0.485

δavg = 0.931

δ0 = 0.485

δavg = 0.921

|S| = 1.32
√
m|S| = 0.58

√
m

n = 8268

δ0 = 0.543

δavg = 1.153

|S| = 0.15
√
m

n = 2012

δ0 = 0.546

δavg = 1.148

|S| = 2.34
√
mdiam=59

diam=202

cylinder2k
n = 20000

diam=168

n = number of vertices

m = number of edges

A partition (A,B, S) of V (G) such that:

Def (small balanced cycle separators)

the separator is small: |S| ≤
√
8m

A and B are balanced: |A| ≤ 2
3n, |B| ≤ 2

3n

S defines a simple cycle

(Fox-Epstein et al. 2016, Holzer et al. 2009)

v6

S = Pi(v) ∪ Pi+2(v) ∪ {v} is minimized
choose the best index i and vertex v s.t.{A = Int(Ri(v) ∪Ri+2(v))

B = Int(Ri+1(v))

|A| ≤ 2
3
n

|B| ≤ 2
3
n

A B

(tests are repated with 200 random choices of the initial seed, the root face)

From Schnyder woods to cycle separators

well balanced (our heuristic)

B
ou

n
d
ar
y
si
ze

(lower values are better)

δavg :=
1
n

∑
v δ(v) (average vertex defect)

unbalanced

sphere12k
horse
Egea

How the separator quality depends on the balance

Evaluation of timing costs

Our performances (pure Java, on a core i7-5600 U, 2.60GHz, 1GB Ram):

se
co
n
d
s

average timings (over 100 executions)

computing balanced Schnyder woods

computing Schnyder drawing

computing shortest separator

total timing costs
(100 choice of random seeds)

We can process ≈ 1.43M − 1.92M vertices/seconds

Previous works can process ≈ 0.54M − 0.62M vertices/seconds
(Fox-Epstein et al. 2016, Holzer et al. 2009) (C/C++, on a Xeon X5650 2.67GHz)

Metis can process ≈ 0.7M vertices/seconds (C, on a Intel core i7-5600 2.60GHz)

Our datasets (several tens of real-world, random and synthetic graphs)

3d meshes from aim@shape and Thingi 10k Random triangulations Synthetic graphs

Thanks

Improving the balance (returning oriented cycles)

