Balanced Schnyder woods for planar triangulations: an experimental study with applications to graph drawing and graph separators

sept. 18th,
Graph Drawing 2019
Luca Castelli Aleardi

Planar graphs are ubiquitous

(from computational geometry to computer graphics, geometric processing, ...)

Real-world graphs are very regular and far from random or pathological cases regularity measure: we use d_{6}, the proportion of degree 6 vertices

$d_{6} \approx 0.99$
random planar triang

Some facts about planar graphs

Kuratowski theorem (1930) (cfr Wagner's theorem, 1937)

- G contains neither K_{5} nor $K_{3,3}$ as minors

Thm (Tutte barycentric method, 1963)
Every 3-connected planar graph G admits a convex representation in R^{2}.

Thm (Colin de Verdière, 1990) Colin de Verdiere invariant (multiplicity of λ_{2} eigenvalue of a generalized laplacian)

- $\mu(G) \leq 3$

("As I have known them")

Schnyder woods ('89)

- planarity criterion via dimension of partial orders: $\operatorname{dim}(G) \leq 3$
- linear-time grid drawing, with $O(n) \times O(n)$ resolution

Thm (Koebe-Andreev-Thurston) Every planar graph with n vertices is isomorphic to the intersection graph of n disks in the plane.

Schnyder woods

(quick overview)

Planar triangulations [Schnyder '90]

3-connected planar graphs [Felsner '01]

toroidal triangulations
[Goncalves Lévêque, '14] genus g triangulations
[Castelli Aleardi Fusy Lewiner, '08]

Schnyder woods: (planar) definition
 [Schnyder '90]

v_{1}

Def

A Schnyder wood of a (rooted) planar triangulation is partition of all inner edges into three sets T_{0}, T_{1} and T_{2}, s.t. i) edge are colored and oriented in such a way that each inner nodes has exaclty one outgoing edge of each color
ii) colors and orientations around each inner node must respect the local Schnyder condition

Looking for
 "nice"
 Schnyder woods

Counting Schnyder woods: (there are an exponential number)
[Bonichon '05]
\# Schnyder woods of triangulations of size $n: \approx 16^{n}$
\# planar triangulations of size n : $\left|\mathcal{T}_{n}\right| \approx 2^{3.2451}$
[Felsner Zickfeld '08] (count of Schnyder woods of a fixed triangulation)

$$
2.37^{n} \leq \max _{T \in \mathcal{T}_{n}}|S W(T)| \leq 3.56^{n}
$$

$\mathcal{T}_{n}:=$ class of planar triangulations of size n
$S W(T):=$ set of all Schnyder woods of the triangulation T

Egalitarian orientations: (only for unconstrained orientations)
[Borradaile et al. '17]
"find an orientation s. t. no vertex is unfairly hit with too many arcs directed into it"
Goal: find an edge orientation that minimizes the lexicographic order of indegrees (or minimize maximum indegree)

Balanced Schnyder woods

balanced vertex
 balanced vertex

unbalanced vertices
if $\operatorname{degree}(v)=3 k$
otherwwise $\operatorname{indeg}_{i}(v):=\#$ incoming edges of color i
A Schnyder wood is balanced if most vertices have a small defect

perfectly balanced

well balanced

strongly unbalanced
balanced Schnyder woods

Conn Dutino
 Proportion of balanced vertices

well balanced
minimal Schnyder wood

strongly unbalanced ($d_{6}:=$ proportion of degree 6 vertices)

balancedSchnyderWood $\left(T,\left(v_{0}, v_{1}, v_{2}\right), k\right)$
$B=\left\{v_{0}, v_{1}, v_{2}\right\} / /$ initialization
$T=$ new int [n] // priority array
$Q_{0}=\emptyset, Q_{1}=\emptyset, \ldots Q_{k-1}=\emptyset / /$ queue initialization
$Q_{0} \cdot$ addLast $\left(v_{2}\right)$
hile $\left(|B| \neq\left\{v_{0}, v_{1}\right\}\right)$ \{
let M be the largest index s.t. $Q_{M} \neq \emptyset$
let $v=Q_{M} \cdot \operatorname{poll}()$
($v \in B$ and v is free) $\{$
colorOrient (v)
conquer $(v) / /$ remove v from B
$T\left[v_{l}\right]++, T\left[v_{r}\right]++/ /$ increase priority
$Q_{\max \left(k-1, T\left[v_{l}\right]\right)}$.addLast $\left(v_{l}\right)$
$Q_{\max \left(k-1, T\left[v_{r}\right]\right)} \cdot \operatorname{addLast}\left(v_{r}\right)$
$Q_{0} . \operatorname{addLast}\left(v_{j_{1}}\right), \ldots, Q_{0} . \operatorname{addLast}\left(v_{j_{t}}\right)$
\} Incremental vertex shelling (Brehm's diploma thesis)

Layout quality for Schnyder drawings

unbalanced

well balanced (our heuristic)
(Fowler and Kobourov, 2012) average percent deviation of edge length

$$
\mathfrak{e l}:=1-\left(\frac{1}{|E|} \sum_{e \in E} \frac{\left|l(e)-l_{\text {avg }}\right|}{\max \left(l_{\text {avg }}, l_{\max }-l_{\text {avg }}\right)}\right)
$$

$$
l(e):=\text { edge length of } e
$$

From Schnyder woods to cycle separators

(Fox-Epstein et al. 2016, Holzer et al. 2009) Def (small balanced cycle separators) A partition (A, B, S) of $V(G)$ such that:

- S defines a simple cycle
- A and B are balanced: $|A| \leq \frac{2}{3} n,|B| \leq \frac{2}{3} n$
- the separator is small: $|S| \leq \sqrt{8 m}$

$n=$ number of vertices $m=$ number of edges

Boundary size (tests are repated with 200 random choices of the initial seed, the root face)
 How the separator quality depends on the balance
(lower values are better)
unbalanced

well balanced (our heuristic)

Evaluation of timing costs

average timings (over 100 executions)

(100 choice of random seeds)

- Our performances (pure Java, on a core i7-5600 U, $2.60 \mathrm{GHz}, 1 \mathrm{~GB}$ Ram):

We can process $\approx 1.43 M-1.92 M$ vertices/seconds

- Metis can process $\approx 0.7 M$ vertices/seconds
(C, on a Intel core i $7-56002.60 \mathrm{GHz}$)
- Previous works can process $\approx 0.54 M-0.62 M$ vertices/seconds (Fox-Epstein et al. 2016, Holzer et al. 2009)
(C/C++, on a Xeon X5650 2.67 GHz)
Our datasets (several tens of real-world, random and synthetic graphs) 3d meshes from aim@shape and Thingi 10k Random triangulations

Thanks

Improving the balance

Real-world meshes

Synthetic and random graphs

Layout quality (higher values are better)

