Balanced Schnyder woods for planar triangulations: an experimental study with applications to graph drawing and graph separators

sept. 18th, Graph Drawing 2019

Luca Castelli Aleardi

Planar graphs are ubiquitous (from computational geometry to computer graphics, geometric processing, ...)

Delaunay triangulation

GIS Technology

geometric modeling

3D reconstruction

David statue (Stanford's Digital Michelangelo Project, 2000)

Real-world graphs are very regular and far from random or pathological cases

regularity measure: we use d_6 , the proportion of degree 6 vertices

Some facts about planar graphs ("As I have known them")

Kuratowski theorem (1930) (cfr Wagner's theorem, 1937)

• G contains neither K_5 nor $K_{3,3}$ as minors

Thm (Tutte barycentric method, 1963) Every 3-connected planar graph G admits a convex representation in R^2 .

Thm (Colin de Verdière, 1990) Colin de Verdiere invariant (multiplicity of λ_2 eigenvalue of a generalized laplacian) • $\mu(G) \leq 3$

Schnyder woods ('89)

- \bullet planarity criterion via dimension of partial orders: $dim(G) \leq 3$
- \bullet linear-time grid drawing, with $O(n) \times O(n)$ resolution

Thm (Koebe-Andreev-Thurston) Every planar graph with n vertices is isomorphic to the intersection graph of ndisks in the plane.

Schnyder woods (quick overview)

Planar triangulations [Schnyder '90]

3-connected planar graphs [Felsner '01]

toroidal triangulations [Goncalves Lévêque, '14] genus g triangulations [Castelli Aleardi Fusy Lewiner, '08]

Looking for "nice" Schnyder woods

Counting Schnyder woods: (there are an exponential number)

[Bonichon '05] # Schnyder woods of triangulations of size n: $\approx 16^n$ # planar triangulations of size n: $|\mathcal{T}_n| \approx 2^{3.2451}$

[Felsner Zickfeld '08]

$$2.37^n \le \max_{T \in \mathcal{T}_n} |SW(T)| \le 3.56^n$$

(count of Schnyder woods of a fixed triangulation) $T \in \mathcal{T}_n$ $\mathcal{T}_n := \text{class of planar triangulations of size } n$

SW(T) := set of all Schnyder woods of the triangulation T

Egalitarian orientations: (only for unconstrained orientations)

[Borradaile et al. '17] "find an orientation s. t. no vertex is unfairly hit with too many arcs directed into it" Goal: find an edge orientation that minimizes the lexicographic order of indegrees (or minimize maximum indegree)

A Schnyder wood is **balanced** if most vertices have a small **defect**

Computing balanced Schnyder woods

Layout quality for Schnyder drawings

(Fowler and Kobourov, 2012) average percent deviation of edge length $\mathfrak{el} := 1 - \left(\frac{1}{|E|} \sum_{e \in E} \frac{|l(e) - l_{avg}|}{\max(l_{avg}, l_{max} - l_{avg})}\right)$ l(e) := edge length of e

From Schnyder woods to cycle separators

(Fox-Epstein et al. 2016, Holzer et al. 2009) Def (small balanced cycle separators)

- A partition (A, B, S) of V(G) such that:
- \bullet S defines a simple cycle
- A and B are balanced: $|A| \leq \frac{2}{3}n$, $|B| \leq \frac{2}{3}n$
- the separator is small: $|S| \le \sqrt{8m}$

n = number of vertices m = number of edges

Boundary size

Separator balance

(tests are repated with 200 random choices of the initial seed, the root face)

From Schnyder woods to cycle separators How the separator quality depends on the balance

Evaluation of timing costs

• Our performances (pure Java, on a core i7-5600 U, 2.60GHz, 1GB Ram): We can process $\approx 1.43M - 1.92M$ vertices/seconds

• Metis can process $\approx 0.7M$ vertices/seconds (C, on a Intel core i7-5600 2.60GHz)

• Previous works can process $\approx 0.54M - 0.62M$ vertices/seconds (Fox-Epstein et al. 2016, Holzer et al. 2009) (C/C++, on a Xeon X5650 2.67GHz)

Thanks

Improving the balance (returning oriented cycles)

