Multi-level Graph Drawing using Infomap Clustering

Seok-Hee Hong, Peter Eades
Marn Torkel, Ziyang Wang, David Chae
University of Sydney

Sungpack Hong, Daniel Langerenken, Hassan Chafi Oracle Research Lab, US

Multi-level Graph Drawing

Step 2:

Infomap Clustering

- computes clusters by translating a graph into a map, which decomposes the myriad nodes and links into modules that represent the graph
- compute the community structures that minimize the expected description length of a random walk trajectory
- The algorithm maximizes an objective function called the minimum description length
- in practice an approximation to the optimal solution can be found quickly, fast for large graphs

Infomap Multi-level Algorithm

1. Coarsening: Infomap Clustering
2. Initialisation

- Circle Placement
- Barycenter Placement
- Zero Placement

3. Refinement

- FR
- FRG: Grid variant of FR
- FME (Fast Multipole Embedded)

Experiment Design

Original layout

- FR
- FRG
- FME

Infomap Multi-level layout

- InfomapFR
- InfomapFRG
- InfomapFME

Comparison

- Runtime, Number of levels
- Quality Metrics: shape-based metrics, crossing, stress
- Visual comparison

L (\# of Level), Runtime

Graph G	$\left\|V_{0}\right\|$	$\left\|E_{0}\right\|$	D	L	Time	$\left\|V_{1}\right\|$	$\left\|E_{1}\right\|\left\|V_{2}\right\|$	$\left\|E_{2}\right\|$	$\left\|V_{3}\right\|$	$\left\|E_{3}\right\|$	
G_15_0	1785	20459	11.5	2	0.02	59	100	9	8		
nasa1824	1824	18692	10.3	2	0.02	53	217	5	7		
G___O	2075	4769	2.3	2	0.02	89	326	8	11		
yeastppi	2361	7182	3.0	2	0.04	302	1923	101	0		
soc_h	2426	11630	4.8	2	0.02	301	1088	149	1		
oflights	2939	15677	5.3	2	0.03	170	477	19	24		
ecolippi	3796	78120	20.6	2	0.03	245	2453	53	1		
facebook	4039	88234	21.9	2	0.02	93	272	7	11		
3elt	4720	13722	2.9	2	0.05	189	489	17	35		
USpowerGrid	4941	6594	1.3	2	0.18	489	963	44	104		
as19990606	5188	10974	2.1	2	0.17	368	2034	12	38		
commanche_dual	7920	19800	2.5	2	0.24	503	1365	34	71		
p2p-Gnutella05	8846	31839	3.6	2	0.20	830	18154	3	0		
astroph2001	16046	121251	7.6	3	0.61	1219	9333	395	68	369	0
condmat2001	16264	47594	2.9	3	1.33	1720	4574	798	774	726	0
crack-dual	20141	30043	1.5	3	1.16	1357	3633	84	216	10	18
bcsstk31	35588	608502	17.1	2	0.36	453	2295	25	44		
shock-9	36476	71290	2.0	3	1.17	1351	3852	74	191	8	14
del16	65536	196575	3.0	3	1.95	1981	5921	101	290	8	16

Comparison of Metrics

(a) Shape-based (larger, bet- (b) stress (smaller, better)

(c) crossing (smaller, better) ter)

Average Metrics

Shape-based Metrics

- Faithful metric for Large graph visualisation
- Similarity between original graph G and Proximity graph G' of drawing $\mathrm{D}(\mathrm{G})$
- Proximity graph: Relative Neighborhood graph, Gabriel graph

Improvement

FM3 vs. Infomap

3elt

(a) FME

(b) FRG

(e) Infomap FRG
(d) Infomap FME

(c) FR

USPowergrid

nasa1824

(a) FME
(d) Infomap FME

(c) FR
(b) FRG
(e) Infomap FRG

(f) Infomap FR

G_4_0

Facebook

FM3 vs. InfomapFR

(a) $F M^{3}$

(c) $F M^{3}$

(b) Infomap FR

(d) Infomap FR

FM3 vs. InfomapFRG

(c) $F M^{3}$

(d) Infomap FRG

Summary

- Overall, Infomap based multi-level algorithm perform significantly better than original layout algorithms.
- Metric wise, InfomapFR layout and InfomapFRG layout perform the best.
- InfomapFME achieved significant improvement.
- InfomapFR and InfomapFRG perform similar to FM3.

Work in Progress

Comparison with other clustering methods

- Louvain, Label Propagation, Spectral clustering

