On Strict (Outer-)Confluent Graphs

Henry Förster, Robert Ganian, Fabian Klute, Martin Nöllenburg Graph Drawing 2019 • September 18, 2019

Confluence

Technique to bundle edges

Definitions

Plane drawing, i.e. no "real" intersections
No wrong adjacencies
No double paths \Rightarrow strict confluency All vertices on a circle \Rightarrow outer confluency

Definitions

Plane drawing, i.e. no "real" intersections
No wrong adjacencies
No double paths \Rightarrow strict confluency All vertices on a circle \Rightarrow outer confluency

Definitions

Plane drawing, i.e. no "real" intersections
No wrong adjacencies
No double paths \Rightarrow strict confluency All vertices on a circle \Rightarrow outer confluency

Definitions

Plane drawing, i.e. no "real" intersections
No wrong adjacencies
No double paths \Rightarrow strict confluency All vertices on a circle \Rightarrow outer confluency

Definitions

Plane drawing, i.e. no "real" intersections
No wrong adjacencies
No double paths \Rightarrow strict confluency All vertices on a circle \Rightarrow outer confluency

Every plane drawing is (strict) confluent
\Rightarrow Questions mainly interesting for non-planar graphs

Known Results

Does a graph G admit a confluent drawing?

- Only known for a few classes of graphs
E.g. Interval graphs, bipartite permutation graphs [Dickerson et al 2005, Hui et al. 2007]
- Negative case also only known for a few classes of graphs E.g. Petersen graph, Chordal graphs [Dickerson et al. 2005]
- Recognizing strict-confluent graphs is NP-hard
[Eppstein et al. 2016]

Known Results

Does a graph G admit a confluent drawing?

- Only known for a few classes of graphs
E.g. Interval graphs, bipartite permutation graphs [Dickerson et al 2005, Hui et al. 2007]
- Negative case also only known for a few classes of graphs E.g. Petersen graph, Chordal graphs [Dickerson et al. 2005]
- Recognizing strict-confluent graphs is NP-hard [Eppstein et al. 2016]

One main open question
Which graphs have a strict outer-confluent drawing?

SC Drawings of Unit Interval Graphs

Graphs that can be represented as intersection of unit intervals

SC Drawings of Unit Interval Graphs

Graphs that can be represented as intersection of unit intervals

Decompose into cliques

SC Drawings of Unit Interval Graphs

Graphs that can be represented as intersection of unit intervals

Decompose into cliques

SC Drawings of Unit Interval Graphs

Graphs that can be represented as intersection of unit intervals

Decompose into cliques

SC Drawings of Unit Interval Graphs

Graphs that can be represented as intersection of unit intervals

Decompose into cliques
Connect the cliques with confluent paths

Our Results

strict-outerconfluent

Our Results

strict-confluent \longleftarrow unit interval

Our Results

Our Results

interval-filament

Our Results

Our Results

Our Results

Our Results

Our Results

Our Results

Our Results

Our Results

Cop number: c [Gavenčiak et al. 18] $\quad \mathbf{a C} \| \mathbf{\|}$

Our Results

Cop number: c [Gavenčiak et al. 18] $\quad \mathbf{a C} \| \mathbf{\|}$

Our Results

Cop number: c [Gavenčiak et al. 18] $\quad \mathbf{a C} \| \mathbf{\|}$

Our Results

Cop number: c [Gavenčiak et al. 18] $\quad \mathbf{a C} \| \mathbf{\|}$

Our Results

Cop number: c [Gavenčiak et al. 18] $\quad \mathbf{a C} \| \mathbf{\|}$

Our Results

Cop number: c [Gavenčiak et al. 18] $\quad \mathbf{a C} \| \mathbf{\|}$

Our Results

Cop number: c [Gavenčiak et al. 18] $\quad \mathbf{a C} \| \mathbf{\|}$

Our Results

Cop number: c [Gavenčiak et al. 18] $\quad \mathbf{a C} \| \mathbf{\|}$

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token
- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token
- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A path

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token
- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A path

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A path

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A path

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A path

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A path

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A path

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A path

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A path

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A path

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A path

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

■ In a turn player can move their token to adjacent vertices

- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token
- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers

Simple two player game on a graph

- Cop player has k cop tokens
- Robber player has 1 robber token

- In a turn player can move their token to adjacent vertices
- Robber is caught if it coincides with a cop

Cop-number: What is the smallest k such that cop player wins?
Example: A circle

Cops and Robbers meeting SOC Graphs

Result: Strict outer-confluent graphs have cop-number 2

Cops and Robbers meeting SOC Graphs

Result: Strict outer-confluent graphs have cop-number 2

Using one cop, robber is "locked" between u and v

Cops and Robbers meeting SOC Graphs

Result: Strict outer-confluent graphs have cop-number 2

Using one cop, robber is "locked" between u and v

Cops and Robbers meeting SOC Graphs

Result: Strict outer-confluent graphs have cop-number 2

Using one cop, robber is "locked" between u and v

Cops and Robbers meeting SOC Graphs

Result: Strict outer-confluent graphs have cop-number 2

Using one cop, robber is "locked" between u and v

Cops and Robbers meeting SOC Graphs

Result: Strict outer-confluent graphs have cop-number 2

Using one cop, robber is "locked" between u and v

Cops and Robbers meeting SOC Graphs

Result: Strict outer-confluent graphs have cop-number 2

Using one cop, robber is "locked" between u and v

Cops and Robbers meeting SOC Graphs

Result: Strict outer-confluent graphs have cop-number 2

Using one cop, robber is "locked" between u and v

Cops and Robbers meeting SOC Graphs

Result: Strict outer-confluent graphs have cop-number 2

Using one cop, robber is "locked" between u and v

Cops and Robbers meeting SOC Graphs

Result: Strict outer-confluent graphs have cop-number 2

Using one cop, robber is "locked" between u and v

Cops and Robbers meeting SOC Graphs

Result: Strict outer-confluent graphs have cop-number 2

Using one cop, robber is "locked" between u and v

Cops and Robbers meeting SOC Graphs

Result: Strict outer-confluent graphs have cop-number 2

Using one cop, robber is "locked" between u and v

Cops and Robbers meeting SOC Graphs

Result: Strict outer-confluent graphs have cop-number 2

Using one cop, robber is "locked" between u and v
How to lock robber to smaller set of vertices?

Moving cops - Case 1

Result: Strict outer-confluent graphs have cop-number 2

$\exists u w$-path under which we can lock the robber

Moving cops - Case 1

Result: Strict outer-confluent graphs have cop-number 2

$\exists u w$-path under which we can lock the robber

Moving cops - Case 1

Result: Strict outer-confluent graphs have cop-number 2

$\exists u w$-path under which we can lock the robber

Moving Cops - Case 2

Result: Strict outer-confluent graphs have cop-number 2

$\exists x w$-path with x, w neighbors of u, v under which we can lock the robber

Moving Cops - Case 2

Result: Strict outer-confluent graphs have cop-number 2

$\exists x w$-path with x, w neighbors of u, v under which we can lock the robber

Moving Cops - Case 2

Result: Strict outer-confluent graphs have cop-number 2

$\exists x w$-path with x, w neighbors of u, v under which we can lock the robber

Moving Cops - Case 3

Result: Strict outer-confluent graphs have cop-number 2

Moving Cops - Case 3

Result: Strict outer-confluent graphs have cop-number 2

Moving Cops - Case 3

Result: Strict outer-confluent graphs have cop-number 2

If no $w x$-path exists, we find y, z such that we can lock a robber that is inside the red region

Catching the Robber

Result: Strict outer-confluent graphs have cop-number 2

Each case makes the set of nodes the robber can use smaller

Catching the Robber

Result: Strict outer-confluent graphs have cop-number 2

Each case makes the set of nodes the robber can use smaller We show that one case always applies
\Rightarrow Two cops suffice to catch the roober

Catching the Robber

Result: Strict outer-confluent graphs have cop-number 2

Each case makes the set of nodes the robber can use smaller We show that one case always applies
\Rightarrow Two cops suffice to catch the roober

Conclusions

One main open question
Which graphs have a strict outer-confluent drawing?

Conclusions

One main open question
Which graphs have a strict outer-confluent drawing?
The question remains open
Not even good intuition if the problem is in P or NP-hard

Conclusions

One main open question
Which graphs have a strict outer-confluent drawing?
The question remains open
Not even good intuition if the problem is in P or NP-hard

Many other questions

Do strict outer-confluent graphs have bounded cliquewidth?
Complexity of other types of confluence?
What other graph classes admit (strict) confluent drawings?
Confluence, but with some allowed crossings? [Bach et al. 16]

Our Results

Cop number: c

Our Results

Cop number: c

Construction of Traces

Given strict confluent drawing D
For each u define trace $t(u)$ (these will be the strings)
Each trace starts at u in D
Viewed from $u, t(u)$ stays on the left side of the paths

Construction of Traces

Given strict confluent drawing D
For each u define trace $t(u)$ (these will be the strings)
Each trace starts at u in D
Viewed from $u, t(u)$ stays on the left side of the paths

Two Problems for Strictness

Domino

Two Problems for Strictness

Two Problems for Strictness
Domino

Two Problems for Strictness
ac ${ }^{\|}$

Two Problems for Strictness

Two Problems for Strictness
ac ${ }^{\|}$

Two Problems for Strictness
ac ${ }^{\|!}$

Two Problems for Strictness

SOC Drawings of Bipartite Permutation Graphs ac ${ }^{\| l|l|}$

 Bipartite Permutation graphs (BP) are graphs that are
SOC Drawings of Bipartite Permutation Graphs ac ${ }^{\|}$

 Bipartite Permutation graphs (BP) are graphs that are - Bipartite
SOC Drawings of Bipartite Permutation Graphs

Bipartite Permutation graphs (BP) are graphs that are

- Bipartite
- Permutation

SOC Drawings of Bipartite Permutation Graphs ac

Bipartite Permutation graphs (BP) are graphs that are

- Bipartite
- Permutation

Better characerization for us:

Bipartite Permutation graphs (BP) are graphs that are

- Bipartite
- Permutation

Better characerization for us:

\Rightarrow Confluent drawing easily possible (Formal proof [Hui et al. 09])
Domino graph is a Bipartite Permutation graph \Rightarrow strictness?

BP Without Dominos

BP without dominos have soc drawings

BP Without Dominos

BP without dominos have soc drawings
Draw given graph with algorithm by Hui et al.

BP Without Dominos

BP without dominos have soc drawings
Draw given graph with algorithm by Hui et al.
Observations:

- $K_{3,3}$ is never alternating
- Dominos might be twisted

BP Without Dominos

BP without dominos have soc drawings
Draw given graph with algorithm by Hui et al.
Observations:

- $K_{3,3}$ is never alternating
- Dominos might be twisted

We can always untwist dominos

BP Without Dominos

BP without dominos have soc drawings
Draw given graph with algorithm by Hui et al.
Observations:

- $K_{3,3}$ is never alternating
- Dominos might be twisted

We can always untwist dominos

Bipartite Strict Confluent Drawings

Drawings such that

Bipartite Strict Confluent Drawings

Drawings such that

- Vertices drawn in bipartite "manner"

Bipartite Strict Confluent Drawings

Drawings such that

- Vertices drawn in bipartite "manner"
- Edges drawn as strict confluent network between them

Bipartite Strict Confluent Drawings

Drawings such that

- Vertices drawn in bipartite "manner"
- Edges drawn as strict confluent network between them

Slide before
Bipartite permutation graphs without domino have such drawings

Bipartite Strict Confluent Drawings

Drawings such that

- Vertices drawn in bipartite "manner"
- Edges drawn as strict confluent network between them

Slide before
Bipartite permutation graphs without domino have such drawings
Such drawings are bipartite permutation graphs without dominos:

- Twisted domino is only order admitting bipartite confluent drawing
- But twisted domino can not be drawn strict outer-confluent

Counterexample for $\mathrm{BP} \subset \mathrm{SOC}$

