On the Edge-Length Ratio of Planar Graphs

Manuel Borrazzo and Fabrizio Frati

Roma Tre University

The 27th International Symposium on Graph Drawing and Network Visualization

18th September 2019

The *edge-length ratio* of a drawing is a natural metric to guarantee the readability of a graph drawing.

Definition

The edge-length ratio $\rho(\Gamma)$ of a straight-line drawing Γ of a graph G = (V, E) is the ratio between the lengths of the longest and of the shortest edge in the drawing.

$$\rho(\Gamma) = \max_{e_1, e_2 \in E(G)} \frac{\ell_{\Gamma}(e_1)}{\ell_{\Gamma}(e_2)},$$

where $\ell_{\Gamma}(e)$ denotes the length of the segment representing an edge e in Γ .

Definition

The planar edge-length ratio $\rho(G)$ of a graph G is the minimum edge-length ratio of any planar straight-line drawing Γ of G.

 $\rho(G) = min(\rho(\Gamma))$

Examples of graphs admitting a good edge-length ratio

Example 1: The nested-triangle graph has planar edge-length ratio less than $1 + \epsilon$.

Examples of graphs admitting a good edge-length ratio

Example 2: The plane 3-tree obtained as the join of a path with an edge has planar edge-length ratio less than 3.

Deciding whether a graph has planar edge-length ratio equal to 1 is an $\ensuremath{\textbf{NP-hard}}$ problem.

- Eades et al.¹ for biconnected planar graphs;
- Cabello et al.² for triconnected planar graphs.

² "Planar embeddings of graphs with specified edge lengths", J. Graph Algorithms Appl. 11(1), (2007)

Manuel Borrazzo and Fabrizio Frati

¹ "Fixed edge-length graph drawing is NP-hard", Discrete Applied Mathematics 28(2), (1990)

The study of combinatorial bounds for the planar edge-length ratio of planar graphs started with Lazard et al.³.

- Outerplanar graphs have planar edge-length ratio smaller than 2.
- 3 There exist outerplanar graphs whose planar edge-length ratio is larger then 2ϵ .

³ "On the edge-length ratio of outerplanar graphs", Theor. Comput. Sci. 770, (2019) Manuel Borrazzo and Fabrizio Frati Edge-length Ratio of Planar Graphs 18th September 2019 8/2

- What is the edge-length ratio for planar graphs?
- What is the edge-length ratio for notable classes of graphs like series-parallel or bipartite graphs?

- **① Theorem 1**: planar graphs have planar edge-length ratio in $\Theta(n)$
- Theorem 2: planar 3-trees with depth k have planar edge-length ratio in O(k)
- **Solution** Theorem 3: 2-trees have planar edge-length ratio in $O(n^{0.695})$
- Theorem 4: for any fixed \(\epsilon > 0\), bipartite planar graphs have planar edge-length ratio smaller than 1 + \(\epsilon\)

Theorem 1: edge-length ratio of planar graphs (1)

Theorem

For arbitrarily large values of n, there exists an n-vertex planar graph whose planar edge-length ratio is in $\Omega(n)$.

Proof:

- Consider any planar straight-line drawing Γ of G
- Assume that the length of the shortest edge of G in Γ is 1
- Let $T_k = a_k b_k c_k$ and $T_{k-1} = a_{k-1} b_{k-1} c_{k-1}$. We prove that: $P(T_k) \ge P(T_{k-1}) + c$, for a constant c

This implies that the edge-length ratio of Γ is $\Omega(n)$.

Theorem 1: edge-length ratio of planar graphs (2)

Lemma

Let T and T' be triangles such that T' is contained into T, then P(T) > P(T')

Lemma

If $||\overline{ad}|| \ge 1$ and $b\widehat{ac} \le 90^{\circ}$, then P(T) > P(T') + 1

Theorem 1: edge-length ratio of planar graphs (3)

• If $b_{k-1}\widehat{a_{k-1}}c_{k-1} \leq 90^{\circ}$, then $P(T_k) > P(T_{k-1}) + 1$

Theorem 1: edge-length ratio of planar graphs (4)

• If $b_{k-1}\widehat{a_{k-1}}c_{k-1} > 90^{\circ}$ and $c_{k-1}\widehat{b_{k-1}}a_k \le 90^{\circ}$, then $P(T_k) > P(T_{k-1}) + 1$

Theorem 1: edge-length ratio of planar graphs (5)

Let p_i be the intersection point between the straight line $a_{k-1}b_{k-1}$ with $\overline{c_{k-1}a_k}$.

Theorem 1: edge-length ratio of planar graphs (6)

Let q_i be the intersection point between the straight line $\overline{a_{k-1}c_{k-1}}$ with $\overline{b_{k-1}a_k}$.

We distinguish two cases:

$$|\overline{a_k q_i}| \ge 0.4$$

$$|\overline{a_k q_i}| \le 0.4$$

Theorem 1: edge-length ratio of planar graphs (7)

• If $|\overline{a_kq_i}| \ge 0.4$, then $P(b_{k-1}c_{k-1}q_i) > P(T_{k-1})$ and since $c_{k-1}\widehat{q}_ia_k > 90^\circ$ we have $|\overline{c_{k-1}a_k}| > |\overline{c_{k-1}q_i}|$, and hence $P(T_k) > P(T_{k-1}) + 0.4$

Theorem 1: edge-length ratio of planar graphs (8)

• If $|\overline{a_k q_i}| \le 0.4$, then $|\overline{a_k p_i}| \ge 0.4$, and hence $P(T_k) - P(T_{k-1})$ will assume its minimum value when $|\overline{b_{k-1}a_k}| = 1$ and $|\overline{a_k p_i}| = 0.4$, then $P(T_k) > P(T_{k-1}) + 0.32$

Theorem

Every plane 3-tree with depth k has planar edge-length ratio in O(k).

A plane 3-tree G is naturally associated with a rooted ternary tree T_G , whose internal nodes represent the internal vertices of G and whose leaves represent the internal faces of G.

The proof is by induction. Let $depth(G) := depth(T_G) = k$, then the planar edge-length ratio of G is in O(k).

Theorem

Every n-vertex 2-tree has planar edge-length ratio in $O(n^{\log_2 \phi}) \subseteq O(n^{0.695})$, where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio.

Lazard et al.⁴ asked whether the planar edge-length ratio of 2-trees is bounded by a constant; recently, at the 14th Bertinoro Workshop on Graph Drawing, Fiala announced a negative answer to the above question.

⁴ "On the edge-length ratio of outerplanar graphs", Theor. Comput. Sci., (2019) Manuel Borrazzo and Fabrizio Frati Edge-length Ratio of Planar Graphs 18th September 2019

Theorem 3: edge-length ratio of 2-trees (2)

Definition

An *apex vertex* of the edge (u, v) is a vertex that is connected to u and v.

Definition

The *side edges* of (u, v) are all the edges with a vertex u or v and apex vertex of (u, v).

Definition

An edge (u, v) is *trivial* if it has no apex, otherwise it is *non-trivial*.

Definition

A *linear* 2-*tree* is a 2-tree such that every edge has at most one non-trivial side edge.

Our L2T-drawer algorithm constructs a planar straight-line drawing Γ of a linear 2-tree H.

Manuel Borrazzo and Fabrizio Frati

Theorem 3: edge-length ratio of 2-trees (4)

Proof:

- Find a subgraph H of G that is a linear 2-tree, and such that every H-component of G has "few" internal vertices.
- Construct a planar straight-line drawing Γ of H by the alogorithm L2T-drawer.
- Secursively draw each *H*-component independently, plugging such drawings into Γ, thus obtaining a drawing of *G*.

Theorem 4: edge-length ratio of bipartite planar graphs

Theorem

For every $\epsilon > 0$, every n-vertex bipartite planar graph has planar edge-length ratio smaller than $1 + \epsilon$.

Proof:

The proof is based on the work of Brinkman et al.⁵ and is by induction on n. The figure shows the *expansion* and *contraction* operations we use in order to perform induction.

⁵ "Generation of simple quadrangulations of the spher", Discrete Mathematics 305(1-3), (2005)

- What is the asymptotic behavior of the planar edge-length ratio of 2-trees?
- Is the planar edge-length ratio of cubic planar graphs sub-linear?
- Is the planar edge-length ratio of *k*-outerplanar graphs bounded by some function of *k*?

Thank you for your attention!