On the Edge-Length Ratio of Planar Graphs

Manuel Borrazzo and Fabrizio Frati

Roma Tre University

The $\mathbf{2 7}^{\text {th }}$ International Symposium on Graph Drawing and Network Visualization
$18^{\text {th }}$ September 2019

Introduction

The edge-length ratio of a drawing is a natural metric to guarantee the readability of a graph drawing.

Edge-length ratio

Definition

The edge-length ratio $\rho(\Gamma)$ of a straight-line drawing Γ of a graph $G=(V, E)$ is the ratio between the lengths of the longest and of the shortest edge in the drawing.

$$
\rho(\Gamma)=\max _{e_{1}, e_{2} \in E(G)} \frac{\ell_{\Gamma}\left(e_{1}\right)}{\ell_{\Gamma}\left(e_{2}\right)},
$$

where $\ell_{\Gamma}(e)$ denotes the length of the segment representing an edge e in Γ.

Planar edge-length ratio

Definition

The planar edge-length ratio $\rho(G)$ of a graph G is the minimum edge-length ratio of any planar straight-line drawing Γ of G.

$$
\rho(G)=\min (\rho(\Gamma))
$$

Examples of graphs admitting a good edge-length ratio

Example 1: The nested-triangle graph has planar edge-length ratio less than $1+\epsilon$.

Examples of graphs admitting a good edge-length ratio

Example 2: The plane 3-tree obtained as the join of a path with an edge has planar edge-length ratio less than 3.

State of the art (1)

Deciding whether a graph has planar edge-length ratio equal to 1 is an NP-hard problem.

- Eades et al. ${ }^{1}$ for biconnected planar graphs;
- Cabello et al. ${ }^{2}$ for triconnected planar graphs.

[^0]
State of the art (2)

The study of combinatorial bounds for the planar edge-length ratio of planar graphs started with Lazard et al. ${ }^{3}$.
(1) Outerplanar graphs have planar edge-length ratio smaller than 2.
(2) There exist outerplanar graphs whose planar edge-length ratio is larger then $2-\epsilon$.

3 "On the edge-length ratio of outerplanar graphs", Theor. Comput. Sci. 770, (2019)

The questions we look at

(1) What is the edge-length ratio for planar graphs?
(2) What is the edge-length ratio for notable classes of graphs like series-parallel or bipartite graphs?

Our results

(1) Theorem 1: planar graphs have planar edge-length ratio in $\Theta(n)$
(3) Theorem 2: planar 3-trees with depth k have planar edge-length ratio in $O(k)$

- Theorem 3: 2-trees have planar edge-length ratio in $O\left(n^{0.695}\right)$
- Theorem 4: for any fixed $\epsilon>0$, bipartite planar graphs have planar edge-length ratio smaller than $1+\epsilon$

Theorem 1: edge-length ratio of planar graphs (1)

Theorem

For arbitrarily large values of n, there exists an n-vertex planar graph whose planar edge-length ratio is in $\Omega(n)$.

Proof:

- Consider any planar straight-line drawing Γ of G
- Assume that the length of the shortest edge of G in Γ is 1
- Let $T_{k}=a_{k} b_{k} c_{k}$ and $T_{k-1}=a_{k-1} b_{k-1} c_{k-1}$. We prove that: $P\left(T_{k}\right) \geq$ $P\left(T_{k-1}\right)+c$, for a constant c
This implies that the edge-length ratio of Γ is $\Omega(n)$.

Theorem 1: edge-length ratio of planar graphs (2)

Lemma

Let T and T^{\prime} be triangles such that T^{\prime} is contained into T, then $P(T)>P\left(T^{\prime}\right)$

Lemma

If $\|\overline{\mathrm{ad}}\| \geq 1$ and bâc $\leq 90^{\circ}$, then $P(T)>P\left(T^{\prime}\right)+1$

Theorem 1: edge-length ratio of planar graphs (3)

- If $b_{k-1} \widehat{a_{k-1}} c_{k-1} \leq 90^{\circ}$, then $P\left(T_{k}\right)>P\left(T_{k-1}\right)+1$

Theorem 1: edge-length ratio of planar graphs (4)

- If $b_{k-1} \widehat{a_{k-1}} c_{k-1}>90^{\circ}$ and $c_{k-1} \widehat{b_{k-1}} a_{k} \leq 90^{\circ}$, then $P\left(T_{k}\right)>P\left(T_{k-1}\right)+1$

Theorem 1: edge-length ratio of planar graphs (5)

Let p_{i} be the intersection point between the straight line $\overline{a_{k-1} b_{k-1}}$ with $\overline{c_{k-1} a_{k}}$.

Theorem 1: edge-length ratio of planar graphs (6)

Let q_{i} be the intersection point between the straight line $\overline{a_{k-1} c_{k-1}}$ with $\overline{b_{k-1} a_{k}}$.
We distinguish two cases:
(1) $\left|\overline{a_{k} q_{i}}\right| \geq 0.4$
(2) $\left|\overline{a_{k} q_{i}}\right| \leq 0.4$

Theorem 1: edge-length ratio of planar graphs (7)

- If $\left|\bar{a}_{k} q_{i}\right| \geq 0.4$, then $P\left(b_{k-1} c_{k-1} q_{i}\right)>P\left(T_{k-1}\right)$ and since $c_{k-1} \widehat{q}_{i} a_{k}>90^{\circ}$ we have $\left|\overline{c_{k-1} a_{k}}\right|>\left|\overline{c_{k-1} q_{i}}\right|$, and hence $P\left(T_{k}\right)>P\left(T_{k-1}\right)+0.4$

Theorem 1: edge-length ratio of planar graphs (8)

- If $\left|\overline{a_{k} q_{i}}\right| \leq 0.4$, then $\left|\overline{a_{k} p_{i}}\right| \geq 0.4$, and hence $P\left(T_{k}\right)-P\left(T_{k-1}\right)$ will assume its minimum value when $\left|\overline{b_{k-1} a_{k}}\right|=1$ and $\left|\overline{a_{k} p_{i}}\right|=0.4$, then $P\left(T_{k}\right)>P\left(T_{k-1}\right)+0.32$

Theorem 2: edge-length ratio of plane 3-trees

Theorem

Every plane 3 -tree with depth k has planar edge-length ratio in $O(k)$.

A plane 3-tree G is naturally associated with a rooted ternary tree T_{G}, whose internal nodes represent the internal vertices of G and whose leaves represent the internal faces of G.
The proof is by induction. Let $\operatorname{depth}(G):=\operatorname{depth}\left(T_{G}\right)=k$, then the planar edge-length ratio of G is in $O(k)$.

Theorem 3: edge-length ratio of 2-trees (1)

Theorem

Every n-vertex 2-tree has planar edge-length ratio in $O\left(n^{\log _{2} \phi}\right) \subseteq O\left(n^{0.695}\right)$, where $\phi=\frac{1+\sqrt{5}}{2}$ is the golden ratio.

Lazard et al. ${ }^{4}$ asked whether the planar edge-length ratio of 2-trees is bounded by a constant; recently, at the $14^{\text {th }}$ Bertinoro Workshop on Graph Drawing, Fiala announced a negative answer to the above question.

4 "On the edge-length ratio of outerplanar graphs", Theor. Comput. Sci., (2019)

Theorem 3: edge-length ratio of 2-trees (2)

Definition

An apex vertex of the edge (u, v) is a vertex that is connected to u and v.

Definition

The side edges of (u, v) are all the edges with a vertex u or v and apex vertex of (u, v).

Definition

An edge (u, v) is trivial if it has no apex, otherwise it is non-trivial.

Theorem 3: L2T-drawer algorithm (3)

Definition

A linear 2-tree is a 2-tree such that every edge has at most one non-trivial side edge.

Our $L 2 T$-drawer algorithm constructs a planar straight-line drawing Γ of a linear 2-tree H.

Theorem 3: edge-length ratio of 2-trees (4)

Proof:

(1) Find a subgraph H of G that is a linear 2-tree, and such that every H-component of G has "few" internal vertices.
(2) Construct a planar straight-line drawing Γ of H by the alogorithm L2T-drawer.
(3) Recursively draw each H-component independently, plugging such drawings into Γ, thus obtaining a drawing of G.

Theorem 4: edge-length ratio of bipartite planar graphs

Theorem

For every $\epsilon>0$, every n-vertex bipartite planar graph has planar edge-length ratio smaller than $1+\epsilon$.

(b)

(c)

(d)

Proof:

The proof is based on the work of Brinkman et al. ${ }^{5}$ and is by induction on n. The figure shows the expansion and contraction operations we use in order to perform induction.

[^1]
Open problems

- What is the asymptotic behavior of the planar edge-length ratio of 2-trees?
- Is the planar edge-length ratio of cubic planar graphs sub-linear?
- Is the planar edge-length ratio of k-outerplanar graphs bounded by some function of k ?

Thank you for your attention!

[^0]: 1 "Fixed edge-length graph drawing is NP-hard", Discrete Applied Mathematics 28(2), (1990)

 2 "Planar embeddings of graphs with specified edge lengths", J. Graph Algorithms Appl. 11(1), (2007)

[^1]: 5 "Generation of simple quadrangulations of the spher", Discrete Mathematics 305(1-3), (2005)

