# Graphs with large total angular resolution 

Oswin Aichholzer Matias Korman Yoshio Okamoto Irene Parada Daniel Perz André van Renssen Birgit Vogtenhuber 18. September 2019


- www.tugraz.at

Definition

## Definition (Total angular resolution)

The total angular resolution of a straight-line drawing is the minimum angle between two intersecting edges of the drawing.

The total angular resolution of a graph $G$, or short $\operatorname{TAR}(G)$, is the maximum total angular resolution over all straight-line drawings of this graph.

## Motivation

Crossing resolution


Angular resolution


Total angular resolution


## Considered questions

- Can we find an upper bound for the number of edges of graphs $G$ with $\operatorname{TAR}(G)>60^{\circ}$ ?
- What is the complexity of deciding whether $\operatorname{TAR}(G) \geq 60^{\circ}$ ?


## Upper bounds for the number of edges

Number of edges of drawings with:

- crossing resolution $90^{\circ}: \leq 4 n-10$ [Didimo, Eades, Liotta, 2011]
- crossing resolution greater than $60^{\circ}: \leq 6.5 n-10$ [Ackermann, Tardos, 2007]
- total angular resolution greater than $60^{\circ}: \leq 2 n-6$ with some small exceptions
[This work]


## Planarized drawing

Planarized drawing: replace every crossing by a vertex.


## Planarized drawing

Planarized drawing: replace every crossing by a vertex.


## Size of a cell

## Size of a cell: number of sides in planarized drawing incident to this cell.



## Size of a cell

## Size of a cell: number of sides in planarized drawing incident to this cell.



## Size of a cell

## Size of a cell: number of sides in planarized drawing incident to this cell.



## Basic idea

Let $D$ be a drawing.
If $\operatorname{TAR}(D)>60^{\circ}$, then $D$ does not contain a triangle and no three edges cross in one point. So every cell has at least size 4.

Basic idea

Let $D$ be a drawing.
If $\operatorname{TAR}(D)>60^{\circ}$, then $D$ does not contain a triangle and no three edges cross in one point. So every cell has at least size 4.

## Lemma

Given a connected drawing $D$ with $n \geq 1$ vertices and $m$ edges. The unbounded cell of $D$ has size $k$ and $\operatorname{TAR}(D)>60^{\circ}$. Then $m \leq 2 n-2-\lceil k / 2\rceil$.
$m \leq 2 n-4$

## Lemma

Given a drawing $D$ with $\operatorname{TAR}(D)>60^{\circ}$. If the unbound cell has size at least 4 , then $m \leq 2 n-4$.

The only possible triangle-free drawings with an unbound cell of size at most 2 are:
= the empty graph

- a single vertex
- two vertices joined by an edge.

Idea to continue


## Idea to continue

$$
\begin{array}{ll}
m^{\prime} \leq 2 n^{\prime}-4 & \\
m^{\prime} \geq m-8 \\
n^{\prime}=n-5 & m \leq 2 n-6
\end{array}
$$



Exceptions


Result

## Theorem <br> Given a graph $G$ with $\operatorname{TAR}(G)>60^{\circ}$. <br> Then $m \leq 2 n-6$ or $G$ is in the exceptions.

## Tightness

## Drawing of a graph with $\operatorname{TAR}(G)>60^{\circ}$ and $2 n-6$ edges.



## Tightness

## Drawing of a graph with $\operatorname{TAR}(G)>60^{\circ}$ and

 $2 n-6$ edges.

## Hardness results

Before: It is NP-hard to decide whether a graph $G$ has angular resolution $\geq 90^{\circ}$. [Forman et al. 1993]

## Hardness results

Before: It is NP-hard to decide whether a graph $G$ has total angular resolution $\geq 90^{\circ}$. [Forman et al. 1993]

## Hardness results

Before: It is NP-hard to decide whether a graph $G$ has total angular resolution $\geq 90^{\circ}$. [Forman et al. 1993]

Theorem<br>It is NP-hard to decide whether a graph $G$ has $\operatorname{TAR}(G) \geq 60^{\circ}$.

## Hardness results

Before: It is NP-hard to decide whether a graph $G$ has total angular resolution $\geq 90^{\circ}$. [Forman et al. 1993]

## Theorem

It is NP-hard to decide whether a graph $G$ has $\operatorname{TAR}(G) \geq 60^{\circ}$.

Proof by reduction from 3SAT.

## Construction



## Variable gadgets



## Variable gadgets



## Variable gadgets



Clause gadget


Clause gadget


## Connections

Connection to:
left side of variable gadget

right side of variable gadget


## Connections



## Connections



## Example


18. September 2019

Open problems

Do almost all graphs
with $\operatorname{TAR}(G)>\frac{k-2}{k} 90^{\circ}$ have at most $2 n-2-\left\lfloor\frac{k}{2}\right\rfloor$ edges?

At which angle(s) $\alpha$ does the decision problem, whether $\operatorname{TAR}(G) \geq \alpha$, change from NP-hard to polynomially solvable?

