

Graphs with large total angular resolution

Oswin Aichholzer Matias Korman Yoshio Okamoto Irene Parada Daniel Perz André van Renssen Birgit Vogtenhuber

18. September 2019

Definition

Definition (Total angular resolution)

The total angular resolution of a straight-line drawing is the minimum angle between two intersecting edges of the drawing.

The total angular resolution of a graph G, or short TAR(G), is the maximum total angular resolution over all straight-line drawings of this graph.

Introduction

Motivation

Considered questions

- Can we find an upper bound for the number of edges of graphs G with TAR(G) > 60°?
- What is the complexity of deciding whether TAR(G) ≥ 60°?

Upper bounds for the number of edges

Number of edges of drawings with:

- crossing resolution 90° : $\leq 4n 10$ [Didimo, Eades, Liotta, 2011]
- crossing resolution greater than 60° : $\leq 6.5n 10$ [Ackermann, Tardos, 2007]
- total angular resolution greater than 60°: ≤ 2n 6 with some small exceptions [This work]

Planarized drawing

Planarized drawing: replace every crossing by a vertex.

Planarized drawing

Planarized drawing: replace every crossing by a vertex.

Size of a cell

Size of a cell: number of sides in planarized drawing incident to this cell.

Size of a cell

Size of a cell: number of sides in planarized drawing incident to this cell.

Size of a cell

Size of a cell: number of sides in planarized drawing incident to this cell.

Basic idea

Let *D* be a drawing. If $TAR(D) > 60^{\circ}$, then *D* does not contain a triangle and no three edges cross in one point. So every cell has at least size 4.

Basic idea

8

Let *D* be a drawing.

If $TAR(D) > 60^{\circ}$, then *D* does not contain a triangle and no three edges cross in one point. So every cell has at least size 4.

Lemma

Given a connected drawing D with $n \ge 1$ vertices and m edges. The unbounded cell of D has size k and TAR(D) > 60°. Then $m \le 2n - 2 - \lceil k/2 \rceil$.

$m \leq 2n-4$

Lemma

Given a drawing D with $TAR(D) > 60^{\circ}$. If the unbound cell has size at least 4, then $m \le 2n - 4$.

The only possible triangle-free drawings with an unbound cell of size at most 2 are:

- the empty graph
- a single vertex
- two vertices joined by an edge.

ldea to continue

ldea to continue

$$m' \le 2n' - 4$$

$$m' \ge m - 8$$

$$m \le 2n - 6$$

$$n' = n - 5$$

Exceptions

Result

Theorem

Given a graph G with $TAR(G) > 60^{\circ}$. Then $m \le 2n - 6$ or G is in the exceptions.

Tightness

Drawing of a graph with $TAR(G) > 60^{\circ}$ and 2n - 6 edges.

Tightness

Drawing of a graph with $TAR(G) > 60^{\circ}$ and 2n - 6 edges.

Before: It is NP-hard to decide whether a graph *G* has angular resolution $\geq 90^{\circ}$. [Forman et al. 1993]

Before: It is NP-hard to decide whether a graph *G* has total angular resolution $\ge 90^{\circ}$. [Forman et al. 1993]

Before: It is NP-hard to decide whether a graph *G* has total angular resolution $\ge 90^{\circ}$. [Forman et al. 1993]

Theorem

It is NP-hard to decide whether a graph G has $TAR(G) \ge 60^{\circ}$.

Before: It is NP-hard to decide whether a graph *G* has total angular resolution $\ge 90^{\circ}$. [Forman et al. 1993]

Theorem

It is NP-hard to decide whether a graph G has $TAR(G) \ge 60^{\circ}$.

Proof by reduction from 3SAT.

Construction

18. September 2019

Variable gadgets

Variable gadgets

Variable gadgets

18. September 2019

⁷ Clause gadget

18. September 2019

⁷ Clause gadget

Connections

Connection to:

left side of variable gadget

right side of variable gadget

Connections

18. September 2019

Connections

Example

Open problems

Do almost all graphs with TAR(G) > $\frac{k-2}{k}$ 90° have at most 2n-2- $\lfloor \frac{k}{2} \rfloor$ edges?

At which angle(s) α does the decision problem, whether TAR(*G*) $\geq \alpha$, change from NP-hard to polynomially solvable?