Maximizing Ink in Partial Edge Drawings of k-plane Graphs

Matthias Hummel, Fabian Klute, Soeren Nickel, *Martin Nöllenburg*

GD 2019 · September 19, 2019

Partial Edge Drawings (PED)

acılı

How to draw non-planar graphs?

Just *hide* the edge crossings!

[Becker et al. TVCG'95], [Bruckdorfer, Kaufmann FUN'12]

Input:

Straight-line graph drawing with crossings

Output: "Crossing-free" partial edge drawing (PED)

Partial Edge Drawings (PED)

How to draw non-planar graphs?

Just *hide* the edge crossings!

[Becker et al. TVCG'95], [Bruckdorfer, Kaufmann FUN'12]

Input:

Straight-line graph drawing with crossings

Output: "Crossing-free" partial edge drawing (PED)

Properties:

- edges are drawn partially with middle part removed
- pairs of opposing stubs

- relies on closure and continuation principles in Gestalt theory
 - user studies confirmed that PEDs reduce clutter and remain readable for long enough stubs [Bruckdorfer et al. GD'15], [Burch et al. GD'11]

Symmetric Partial Edge Drawings (SPED)

acili

symmetric PED (SPED)

Input drawing

Symmetric Partial Edge Drawings (SPED)

acili

SPED:

- both stubs of an edge have the same length
- identical stub lengths can facilitate finding adjacencies

Symmetric Partial Edge Drawings (SPED)

acilii

SPED:

- both stubs of an edge have the same length
- identical stub lengths can facilitate finding adjacencies

Optimization problem: maximize total stub length/drawn ink \rightarrow **MaxPED** and **MaxSPED**

show as much information as possible without crossings

acılı

Given: k-plane* straight-line drawing Γ **Find:** maximum-ink (S)PED of Γ

Given: k-plane* straight-line drawing Γ **Find:** maximum-ink (S)PED of Γ

Given: k-plane^{*} straight-line drawing Γ **Find:** maximum-ink (S)PED of Γ

	k = 2	k = 3	$k \ge 4$	arbitrary k
MaxSPED	$O(n \log n)$			NP-hard [Bruckdorfer PhD'15]
MaxPED	[Bruckdorfer et al. JGAA'17]			

Given: k-plane^{*} straight-line drawing Γ **Find:** maximum-ink (S)PED of Γ

	k = 2	k = 3	$k \ge 4$	arbitrary k
SPED		NP-hard		NP-hard [Bruckdorfer PhD'15]
) Max	$O(n \log n)$ [Bruckdorfer et al.			
MaxPEC	JOVY [1]		NP-hard	

Given: k-plane* straight-line drawing Γ **Find:** maximum-ink (S)PED of Γ

	k = 2	k = 3	$k \ge 4$	arbitrary k
SPED		NP-hard		NP-hard [Bruckdorfer PhD'15]
Max	$O(n \log n)$	Dynamic Programming if edge intersection graph		
MaxPED	[Bruckdorfer et al. JGAA'17]	 is a tree, or more generally has bounded treewidth 		
			NP-hard	

NP-Hardness

acılı

reduction from PLANAR 3SAT
 gadget-based reduction

reduction from PLANAR 3SAT
gadget-based reduction

variable gadgets: 2 optimal states

acili

reduction from PLANAR 3SAT
gadget-based reduction

variable gadgets: 2 optimal states

acili

reduction from PLANAR 3SAT
gadget-based reduction

variable gadgets: 2 optimal states

acili

reduction from PLANAR 3SAT
gadget-based reduction

variable gadgets: 2 optimal states

acili

M. Hummel, F. Klute, S. Nickel, M. Nöllenburg · Maximizing Ink in Partial Edge Drawings of k-plane Graphs

reduction from PLANAR 3SAT
gadget-based reduction

variable gadgets: 2 optimal states

acili

- reduction from PLANAR 3SAT
 gadget-based reduction
 variable gadgets: 2 optimal states
 - clause gadgets: 3 optimal states

acili

M. Hummel, F. Klute, S. Nickel, M. Nöllenburg · Maximizing Ink in Partial Edge Drawings of k-plane Graphs

- reduction from PLANAR 3SAT
 gadget-based reduction
 variable gadgets: 2 optimal states
 - clause gadgets: 3 optimal states

acili

- reduction from PLANAR 3SAT
 gadget-based reduction
 variable gadgets: 2 optimal states
 - clause gadgets: 3 optimal states

acili

M. Hummel, F. Klute, S. Nickel, M. Nöllenburg · Maximizing Ink in Partial Edge Drawings of k-plane Graphs

- reduction from PLANAR 3SAT
 gadget-based reduction
 - variable gadgets: 2 optimal states
 - clause gadgets: 3 optimal states
 - literal wires: even length paths, 2 opt. states

acili

- reduction from PLANAR 3SAT
 gadget-based reduction
 - variable gadgets: 2 optimal states
 - clause gadgets: 3 optimal states
 - literal wires: even length paths, 2 opt. states

acili

M. Hummel, F. Klute, S. Nickel, M. Nöllenburg · Maximizing Ink in Partial Edge Drawings of k-plane Graphs

- reduction from PLANAR 3SAT
 gadget-based reduction
 - variable gadgets: 2 optimal states
 - clause gadgets: 3 optimal states
 - literal wires: even length paths, 2 opt. states

acili

- reduction from PLANAR 3SAT
 gadget-based reduction
 - variable gadgets: 2 optimal states
 - clause gadgets: 3 optimal states
 - literal wires: even length paths, 2 opt. states

acili

- reduction from PLANAR 3SAT
 gadget-based reduction
 - variable gadgets: 2 optimal states
 - clause gadgets: 3 optimal states
 - literal wires: even length paths, 2 opt. states

acili

M. Hummel, F. Klute, S. Nickel, M. Nöllenburg \cdot Maximizing Ink in Partial Edge Drawings of k-plane Graphs

- reduction from PLANAR 3SAT
 gadget-based reduction
 - variable gadgets: 2 optimal states
 - clause gadgets: 3 optimal states
 - literal wires: even length paths, 2 opt. states

acili

- reduction from PLANAR 3SAT
 gadget-based reduction
 variable gadgets: 2 optimal states
 - clause gadgets: 3 optimal states
 - literal wires: even length paths, 2 opt. states
 - unsatisfied clause loses ink

acili

M. Hummel, F. Klute, S. Nickel, M. Nöllenburg · Maximizing Ink in Partial Edge Drawings of k-plane Graphs

grid placement

Theorem: MaxSPED is NP-hard for 3-plane input drawings.

- reduction from PLANAR 3SAT
 gadget-based reduction
 - variable gadgets: 2 optimal states
 - clause gadgets: 3 optimal states
 - literal wires: even length paths, 2 opt. states
 - unsatisfied clause loses ink
 - grid placement

MaxPED: similar proof idea, but non-symmetric stubs require more complex gadgets and up to 4 crossings per edge. **Theorem:** MaxPED is NP-hard for 4-plane input drawings.

Theorem: MaxSPED is NP-hard for 3-plane input drawings.

Algorithms

M. Hummel, F. Klute, S. Nickel, M. Nöllenburg · Maximizing Ink in Partial Edge Drawings of k-plane Graphs

6

Edge Intersection Graph

- intersection graph $C(\Gamma)$: every vertex u corresponds to one segment s(u) in Γ
- edge (u,v) in C iff s(u) and s(v) cross in Γ

Edge Intersection Graph

- intersection graph $C(\Gamma)$: every vertex u corresponds to one segment s(u) in Γ
- edge (u,v) in C iff s(u) and s(v) cross in Γ

Edge Intersection Graph

- intersection graph $C(\Gamma)$: every vertex u corresponds to one segment s(u) in Γ
- edge (u,v) in C iff s(u) and s(v) cross in Γ

First assumption: *C* is a tree

Discretized Stub Lengths for MaxSPED

pick arbitrary root for tree $C(\Gamma)$

acili
pick arbitrary root for tree $C(\Gamma)$

edge crossings induce different relevant stub lengths
 l₀ - entire edge (no gap)

- **pick** arbitrary root for tree $C(\Gamma)$
- edge crossings induce different relevant stub lengths
 l₀ entire edge (no gap)
 - $l_1, \ldots, l_{\deg(u)}$ shorter to longer stubs

- **pick** arbitrary root for tree $C(\Gamma)$
- edge crossings induce different relevant stub lengths
 l₀ entire edge (no gap)

■ $l_1, \ldots, l_{\deg(u)}$ – shorter to longer stubs

- **pick** arbitrary root for tree $C(\Gamma)$
- edge crossings induce different relevant stub lengths
 l₀ entire edge (no gap)
 - $l_1, \ldots, l_{\deg(u)}$ shorter to longer stubs

- **pick** arbitrary root for tree $C(\Gamma)$
- edge crossings induce different relevant stub lengths
 l₀ entire edge (no gap)
 - $l_1, \ldots, l_{\deg(u)}$ shorter to longer stubs

- **pick** arbitrary root for tree $C(\Gamma)$
- edge crossings induce different relevant stub lengths
 l₀ entire edge (no gap)
 - $l_1, \ldots, l_{\deg(u)}$ shorter to longer stubs

- **pick** arbitrary root for tree $C(\Gamma)$
- edge crossings induce different relevant stub lengths
 l₀ entire edge (no gap)

■ $l_1, \ldots, l_{\deg(u)}$ – shorter to longer stubs

- **pick** arbitrary root for tree $C(\Gamma)$
- edge crossings induce different relevant stub lengths
 l₀ entire edge (no gap)

■ $l_1, \ldots, l_{\deg(u)}$ – shorter to longer stubs

- short(u) ... best solution with stubs not affecting the stubs of the parent
- long(u) ... best solution with stubs possibly affecting the stubs of the parent

Dynamic Programming: Recurrence

$$T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise.} \end{cases}$$

acili

Dynamic Programming: Recurrence

 $T_i(u) \dots$ maximum ink value for subtree rooted at u s.t. s(u) has stubs of length $l_i(u)$

 $s(u) \dots$ segment for vertex u

 $l_i(u) \dots i$ -th stub length of s(u)

$$T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise.} \end{cases}$$

Dynamic Programming: Recurrence

 $T_i(u) \dots$ maximum ink value for subtree rooted at u s.t. s(u) has stubs of length $l_i(u)$

 $s(u) \dots$ segment for vertex u

 $l_i(u) \dots i$ -th stub length of s(u)

$$\frac{l_i(u)}{v \in c(u)} + \sum_{v \in c(u)} \begin{cases} \text{short}(v) \\ \log(v) \end{cases}$$

if s(u) with length $l_i(u)$ intersects s(v) otherwise.

 $c(u) \ldots$ set of children of u

 $T_i(u) =$

short(v) = max{ $T_1(v), ..., T_p(v)$ } ... stubs not affecting the parent

> $long(v) = max\{T_0(v), ..., T_{deg(v)}(v)\}$... all stubs (possibly affecting the parent)

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

Input:

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

Input:

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

$$v_1: T_0(v_1) = l_0 = 3$$

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

Intersection Graph:

$$u_1$$
 w_2 u_2 v_3

 $\circ r$

$$v_1: \frac{T_0(v_1) = l_0}{T_1(v_1) = l_1} = 2$$

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

$$v_2: \frac{T_0(v_2) = l_0}{T_1(v_2) = l_1} = 4$$

Input:

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

Intersection Graph:

 u_2

 $\mathbf{b} w$

 v_3

$$v_{1} : \begin{array}{l} T_{0}(v_{1}) & = 3 \\ T_{1}(v_{1}) & = 2 \end{array}$$

$$v_{2} : \begin{array}{l} T_{0}(v_{2}) & = 5 \\ T_{1}(v_{2}) & = 4 \end{array}$$

$$v_3: \frac{T_0(v_3) = l_0}{T_1(v_3) = l_1} = 2$$

 u_1 .

 $v_1 v_2$

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

Intersection Graph:

Input:

 $T_0(u_1) = l_0 + \text{short}(v_1) + \text{short}(v_2) + \text{short}(v_3) = 21$

 $v_1 \, v_2$

 v_3

 u_1 :

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

Intersection Graph:

 $v_1 \, v_2$

 v_3

Input:

$$T_0(u_1) = l_0 + \text{short}(v_1) + \text{short}(v_2) + \text{short}(v_3) = 21$$

$$T_1(u_1) = l_1 + \log(v_1) + \log(v_2) + \log(v_3) = 14$$

 u_1 :

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

Intersection Graph:

 $v_1 \, v_2$

 v_3

Input:

$$T_0(u_1) = l_0 + \text{short}(v_1) + \text{short}(v_2) + \text{short}(v_3) = 22$$

$$T_1(u_1) = l_1 + \log(v_1) + \log(v_2) + \log(v_3) = 14$$

$$u_1: T_2(u_2) = l_2 + \operatorname{short}(v_1) + \log(v_2) + \log(v_3) = 15$$

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

Intersection Graph:

 $v_1 \, v_2$

 v_3

Input:

$$T_0(u_1) = l_0 + \text{short}(v_1) + \text{short}(v_2) + \text{short}(v_3) = 21$$

$$T_1(u_1) = l_1 + \log(v_1) + \log(v_2) + \log(v_3) = 14$$

$$u_1: T_2(u_2) = l_2 + \operatorname{short}(v_1) + \log(v_2) + \log(v_3) = 15$$

$$T_3(u_3) = l_3 + \operatorname{short}(v_1) + \operatorname{short}(v_2) + \log(v_3) = 16$$

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

Intersection Graph:

 $v_1 \, v_2$

 v_3

Input:

$$T_0(u_1) = l_0 + \text{short}(v_1) + \text{short}(v_2) + \text{short}(v_3) = 21$$

$$T_1(u_1) = l_1 + \log(v_1) + \log(v_2) + \log(v_3) = 14$$

$$u_1: T_2(u_2) = l_2 + \operatorname{short}(v_1) + \log(v_2) + \log(v_3) = 15$$

$$T_3(u_3) = l_3 + \operatorname{short}(v_1) + \operatorname{short}(v_2) + \log(v_3) = 16$$

$$T_4(u_4) = l_4 + \text{short}(v_1) + \text{short}(v_2) + \log(v_3) = 22$$

 \mathbf{C}

Input:

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

Intersection Graph:

$$T_{0}(u_{1}) = l_{0} + \operatorname{short}(v_{1}) + \operatorname{short}(v_{2}) + \operatorname{short}(v_{3}) = 21$$

$$T_{1}(u_{1}) = l_{1} + \log(v_{1}) + \log(v_{2}) + \log(v_{3}) = 14$$

$$u_{1}: T_{2}(u_{2}) = l_{2} + \operatorname{short}(v_{1}) + \log(v_{2}) + \log(v_{3}) = 15$$

$$T_{3}(u_{3}) = l_{3} + \operatorname{short}(v_{1}) + \operatorname{short}(v_{2}) + \log(v_{3}) = 16$$

$$T_{4}(u_{4}) = l_{4} + \operatorname{short}(v_{1}) + \operatorname{short}(v_{2}) + \log(v_{3}) = 22$$

 $v_1 \, v_2$

 v_3

 \mathbf{C}

Input:

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

Intersection Graph:

$$T_{0}(u_{1}) = l_{0} + \operatorname{short}(v_{1}) + \operatorname{short}(v_{2}) + \operatorname{short}(v_{3}) = 21$$

$$T_{1}(u_{1}) = l_{1} + \operatorname{long}(v_{1}) + \operatorname{long}(v_{2}) + \operatorname{long}(v_{3}) = 14$$

$$u_{1}: T_{2}(u_{2}) = l_{2} + \operatorname{short}(v_{1}) + \operatorname{long}(v_{2}) + \operatorname{long}(v_{3}) = 15$$

$$T_{3}(u_{3}) = l_{3} + \operatorname{short}(v_{1}) + \operatorname{short}(v_{2}) + \operatorname{long}(v_{3}) = 16$$

$$T_{4}(u_{4}) = l_{4} + \operatorname{short}(v_{1}) + \operatorname{short}(v_{2}) + \operatorname{long}(v_{3}) = 22$$

 $v_1 \, v_2$

 v_3

10

Input:

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

$$u_2: \frac{T_0(u_2) = l_0}{T_1(u_2) = l_1} = 2$$

= 5

= 4

= 4= 2

= 5

= 2

= 16

= 22

20

Input:

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

$$T_0(w) = l_0 + \text{short}(u_1) + \text{short}(u_2) = 38$$
$$T_1(w) = l_1 + \log(u_1) + \log(u_2) = 33$$
$$w : - (w) = 1 + \log(u_1) + \log(u_2) = 33$$

$$T_2(w) = l_2 + \operatorname{short}(u_1) + \operatorname{long}(u_2) = 31$$
$$T_2(w) = l_2 + \operatorname{short}(u_2) + \operatorname{long}(u_2) = 31$$

$$T_3(w) = l_3 + \text{short}(u_1) + \log(u_2) = 35$$

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

Intersection Graph:

$$r: \frac{T_0(r) = l_0 + \text{short}(w)}{T_1(r) = l_1 + \log(w)} = 45$$

 u_1

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

Input:

Intersection Graph:

$$r: \frac{T_0(r) = l_0 + \text{short}(w)}{T_1(r) = l_1 + \text{long}(w)} = 45$$

 u_1

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

Input:

$$r: \frac{T_0(r) = l_0 + \operatorname{short}(w)}{T_1(r) = l_1 + \operatorname{long}(w)} = 45 \leftarrow \operatorname{backtracking} = 44$$

 $T_i(u) = l_i(u) + \sum_{v \in c(u)} \begin{cases} \text{short}(v) & \text{if } s(u) \text{ with length } l_i(u) \text{ intersects } s(v) \\ \log(v) & \text{otherwise} \end{cases}$

Intersection Graph:

$$r: \frac{T_0(r) = l_0 + \text{short}(w)}{T_1(r) = l_1 + \log(w)} = 45$$

 u_1

Running Time Analysis

- recurrence can be solved naively in $O(mk^2)$ time for m segments in the k-plane input drawing Γ
- can be improved to O(mk) time using dependencies in the order of the stub lengths
- Intersection graph $C(\Gamma)$ is a tree with O(m) edges and can be computed in $O(m \log m)$ time

Running Time Analysis

- recurrence can be solved naively in $O(mk^2)$ time for m segments in the k-plane input drawing Γ
- can be improved to O(mk) time using dependencies in the order of the stub lengths
- Intersection graph $C(\Gamma)$ is a tree with O(m) edges and can be computed in $O(m \log m)$ time

Theorem: MaxSPED can be solved in $O(mk + m \log m)$ time for a k-plane input drawing whose intersection graph is a tree.

Running Time Analysis

- recurrence can be solved naively in $O(mk^2)$ time for m segments in the k-plane input drawing Γ
- can be improved to O(mk) time using dependencies in the order of the stub lengths
- Intersection graph $C(\Gamma)$ is a tree with O(m) edges and can be computed in $O(m \log m)$ time

Theorem: MaxSPED can be solved in $O(mk + m \log m)$ time for a k-plane input drawing whose intersection graph is a tree.

MaxPED: similar algorithm idea, but non-symmetric stubs require k^2 pairs of stub lengths.

Theorem: MaxPED can be solved in $O(mk^2 + m \log m)$ time for k-plane input drawing with tree intersection graph.

Bounded Treewidth

If the edge intersection graph $C(\Gamma)$ has bounded treewidth τ then a more complex dynamic programming idea can be used.

- each node (bag) of a *nice* tree decomposition of C has at most $\tau + 1$ vertices; for a k-plane drawing Γ it is sufficient to store maximum ink values for at most $(k + 1)^{\tau+1}$ stub sets
- \blacksquare perform bottom-up dynamic programming in the nice tree decomposition, which has $O(\tau m)$ nodes
- the operations for one stub set require at most $O(k\tau)$ time

Bounded Treewidth

If the edge intersection graph $C(\Gamma)$ has bounded treewidth τ then a more complex dynamic programming idea can be used.

- each node (bag) of a *nice* tree decomposition of C has at most $\tau + 1$ vertices; for a k-plane drawing Γ it is sufficient to store maximum ink values for at most $(k + 1)^{\tau+1}$ stub sets
- \blacksquare perform bottom-up dynamic programming in the nice tree decomposition, which has $O(\tau m)$ nodes
- the operations for one stub set require at most $O(k\tau)$ time

Theorem: For a k-plane drawing Γ with m edges whose intersection graph has treewidth τ , MaxSPED can be solved in $O(m(k+1)^{\tau+2}\tau^2 + m\log m)$ time.
Bounded Treewidth

If the edge intersection graph $C(\Gamma)$ has bounded treewidth τ then a more complex dynamic programming idea can be used.

- each node (bag) of a *nice* tree decomposition of C has at most $\tau + 1$ vertices; for a k-plane drawing Γ it is sufficient to store maximum ink values for at most $(k + 1)^{\tau+1}$ stub sets
- \blacksquare perform bottom-up dynamic programming in the nice tree decomposition, which has $O(\tau m)$ nodes
- the operations for one stub set require at most $O(k\tau)$ time

Theorem: For a k-plane drawing Γ with m edges whose intersection graph has treewidth τ , MaxSPED can be solved in $O(m(k+1)^{\tau+2}\tau^2 + m\log m)$ time.

The algorithm can be adapted to solve MaxPED with an increase by a factor of k in the running time.

Experiments

We implemented the treewidth-based algorithms for MaxSPED in Python and performed some proof-of-concept experiments.

- used "htd" library to compute nice tree decomposition
- 800 random graphs with 40 vertices and 40–75 edges
- spring and circular layouts from NetworkX and graphviz

Conclusion

	k = 2	k = 3	$k \ge 4$	arbitrary k
SPED	$O(n\log n)$ [Bruckdorfer et al. JGAA'17]	NP-hard		NP-hard [Bruckdorfer PhD'15]
D Max		 Dynamic Programming if edge intersection graph is a tree, or more generally has bounded treewidth 		
MaxPE			NP-hard	

Conclusion

open questions:

- complexity of MaxPED for k = 3
- **a**lgorithms/complexity for deciding existence of δ -HPEDs

Conclusion

open questions:

- complexity of MaxPED for k = 3
- algorithms/complexity for deciding existence of δ -HPEDs

Thank You!