

A Note on Universal Point Sets for Planar Graphs

Manfred Scheucher, Hendrik Schrezenmaier, Raphael Steiner

Definition: *n*-universal point set S: \forall planar *n*-vertex graph G can be drawn straight-line on S.

Definition: *n*-universal point set S: \forall planar *n*-vertex graph G can be drawn straight-line on S.

w.l.o.g.: *n*-universal sets in general position

Definition: *n*-universal point set S: \forall planar *n*-vertex graph G can be drawn straight-line on S.

Definition: *n*-universal point set S: \forall planar *n*-vertex graph G can be drawn straight-line on S.

Problem: What is the smallest size f(n) of an n-universal point set?

Definition: *n*-universal point set S: \forall planar *n*-vertex graph G can be drawn straight-line on S.

Problem: What is the smallest size f(n) of an n-universal point set?

Problem (Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw, Mitchell):

What is the smallest size σ of a collection of planar graphs without a simultaneous embedding (conflict collection)?

Upper Bounds

• $(2n-4) \times (n-2)$ grid is *n*-universal, hence $f(n) = O(n^2)$ [De Fraysseix, Pach, Pollack '90]

• $f(n) \leq \frac{n^2}{4} - O(n)$

• . . .

[Bannister, Cheng, Devanny, Eppstein '14]

Upper Bounds

• $(2n-4) \times (n-2)$ grid is *n*-universal, hence $f(n) = O(n^2)$ [De Fraysseix, Pach, Pollack '90]

• $f(n) \leq \frac{n^2}{4} - O(n)$ [Bannister, Cheng, Devanny, Eppstein '14]

•

• $f_s(n) \leq O(n^{3/2} \log n)$ for stacked triangulations [Fulek and Tóth '15]

Lower Bounds

- Counting arguments
- $f(n) \ge n + \Omega(\sqrt{n})$ [De Fraysseix, Pach, Pollack '90]

• • • •

• $f(n) \ge f_s(n) \ge 1.235n(1+o(1))$ [Kurowski '04]

Lower Bounds

- Counting arguments
- $f(n) \ge n + \Omega(\sqrt{n})$ [De Fraysseix, Pach, Pollack '90]

• • • •

• $f(n) \ge f_s(n) \ge 1.235n(1+o(1))$ [Kurowski '04]

•
$$f(n) = n$$
 for $n \le 10$,
 $f(n) \ge f_s(n) \ge n+1$ for $n \ge 15$, and
 $\sigma \le 7393$ [Cardinal, Hoffmann, Kusters '15]

Lower Bounds

Counting arguments

• . . .

- $f(n) \ge n + \Omega(\sqrt{n})$ [De Fraysseix, Pach, Pollack '90]
- $f(n) \ge f_s(n) \ge 1.235n(1+o(1))$ [Kurowski '04]
- $|S| \ge 1.293n(1+o(1))$ \nexists 11-universal set on 11 points

• f(n) = n for $n \le 10$ $f(n) \ge f_s(n) \ge n+1$ for $n \ge 15$, and $\sigma \le 7393$ [Cardinal, Hoffmann, Kusters '15] $\sigma \le 49$

Theorem (S., Schrezenmaier, Steiner '19). $f_s(n) \ge (1.293 - o(1))n$

Starting from a triangle, a *stacked triangulation* is built up by repeated insertions of degree-3-vertices into triangles.

Lemma (Cardinal, Hoffmann, Kusters '15). The induced labeling is unique.

Starting from a triangle, a *stacked triangulation* is built up by repeated insertions of degree-3-vertices into triangles.

Lemma (Cardinal, Hoffmann, Kusters '15). The induced labeling is unique.

Obsv. # of labeled stacked triangulations: $2^{n-4}(n-3)!$

Starting from a triangle, a *stacked triangulation* is built up by repeated insertions of degree-3-vertices into triangles.

Lemma (Cardinal, Hoffmann, Kusters '15). The induced labeling is unique.

Obsv. # of labeled stacked triangulations: $2^{n-4}(n-3)!$

Corollary. Let m be the size of an n-universal set. Then

 $2^{n-4}(n-3)! \le \#$ labelings of n out of m points $= \frac{m!}{(m-n)!}$

Theorem (S., Schrezenmaier, Steiner '19). $f_s(n) \ge (1.293 - o(1))n$

Theorem (S., Schrezenmaier, Steiner '19).

There is a set of 49 stacked triangulations on 11 vertices without a simultaneous embedding, hence

 $f(11) = f_s(11) = 12$ and $\sigma \le 49$.

SAT model for a fixed set S and fixed graph G = (V, E):

• $M_{i,j}$... vertex v_i is mapped to point p_j

SAT model for a fixed set S and fixed graph G = (V, E):

- $M_{i,j}$... vertex v_i is mapped to point p_j
- Injective mapping $V \to S$

every vertex v_i has to be mapped:

$$\bigvee_{j} M_{i,j}$$

no two vertices v_{i_1}, v_{i_2} mapped to the same point:

$$\neg M_{i_1,j} \lor \neg M_{i_2,j}$$

SAT model for a fixed set S and fixed graph G = (V, E):

- $M_{i,j}$... vertex v_i is mapped to point p_j
- Injective mapping $V \to S$
- No two edges cross

 \forall pair of edges (v_1, v_2) , (v_3, v_4) \forall pair of crossing segments (p_1, p_2) , (p_3, p_4) $\neg M \qquad \forall \neg M \qquad \forall \neg M \qquad \forall \neg M$

 $\neg M_{v_1,p_1} \lor \neg M_{v_2,p_2} \lor \neg M_{v_3,p_3} \lor \neg M_{v_4,p_4}$

SAT model for a fixed set S and fixed graph G = (V, E):

- $M_{i,j}$... vertex v_i is mapped to point p_j
- Injective mapping $V \to S$
- No two edges cross depends on G \forall pair of edges (v_1, v_2) , (v_3, v_4) \forall pair of crossing segments (p_1, p_2) , (p_3, p_4)

$$\neg M_{v_1,p_1} \lor \neg M_{v_2,p_2} \lor \neg M_{v_3,p_3} \lor \neg M_{v_4,p_4}$$

All in one SAT instance:

- all graphs simultaneously
- point sets via signotope axioms

All in one SAT instance:

- all graphs simultaneously
- point sets via signotope axioms

... but solvers do not terminate ...

- Enumerate all triangulations on 11 vertices
- (1,249)

via plantri (planar graph generator by Brinkmann and McKay)

- Enumerate all triangulations on (11) vertices
- Enumerate all order types on (11) points

(2,343,203,071)

(1,249)

via signotope/chirotope axioms, 20 CPU hours, 100 GB storage

- Enumerate all triangulations on (11) vertices
- Enumerate all order types on 11 points
- Test necessary criterion on point sets

(1,249)

(2,343,203,071)

- Enumerate all triangulations on (11) vertices
- Enumerate all order types on 11 points
- Test necessary criterion on point sets

(2,343,203,071)

- Enumerate all triangulations on (11) vertices
- Enumerate all order types on (11) points

(2,343,203,071)

(1, 249)

- Test necessary criterion on point sets
- Pick \mathcal{G} as set of 11-vertex triangulations with maximum degree 10 and test each pair S and G

via SAT solver, priority queue

- Enumerate all triangulations on (11) vertices
- Enumerate all order types on (11) points

(2,343,203,071)

(1, 249)

- Test necessary criterion on point sets
- Pick \mathcal{G} as set of 11-vertex triangulations with maximum degree 10 and test each pair S and G
- For remaining G-universal sets, create 0-1-matrix and use IP to find minimal set of triangulations which need to be added (Minimum set cover)

- Enumerate all triangulations on (11) vertices
- Enumerate all order types on (11) points

(2,343,203,071)

(1,249)

- Test necessary criterion on point sets
- Pick \mathcal{G} as set of 11-vertex triangulations with maximum degree 10 and test each pair S and G
- For remaining G-universal sets, create 0-1-matrix and use IP to find minimal set of triangulations which need to be added (Minimum set cover)
- 500 CPU days later:

previously: 7393 for larger n

conflict collection of 49 stacked triang. on 11 vertices!

• run program on conflict graphs, only phase 1+2 (of 6)

• run program on conflict graphs, only phase 1+2 (of 6)

independent SAT model

axiomize point set S (chirotope/signotope)

mapping $S \to V$ for each conflict graph (as before)

• run program on conflict graphs, only phase 1+2 (of 6)

independent SAT model

axiomize point set S (chirotope/signotope)

mapping $S \to V$ for each conflict graph (as before)

Thank you for your attention!