A Note on Universal Point Sets for Planar Graphs

Manfred Scheucher, Hendrik Schrezenmaier, Raphael Steiner

Universal Sets

Definition: n-universal point set S :
\forall planar n-vertex graph G can be drawn straight-line on S.

$$
n=3
$$

$$
n=4:
$$

$$
n=5:
$$

(unique)

(unique)

(unique)

Universal Sets

Definition: n-universal point set S :
\forall planar n-vertex graph G can be drawn straight-line on S.

$$
n=3:
$$

$$
n=4:
$$

$$
n=5:
$$

w.l.o.g.: n-universal sets in general position

Universal Sets

Definition: n-universal point set S :
\forall planar n-vertex graph G can be drawn straight-line on S.

$$
n=6:
$$

degrees: 4-regular

degrees: 3,3,4,4,5,5

Universal Sets

Definition: n-universal point set S :
\forall planar n-vertex graph G can be drawn straight-line on S.

Problem: What is the smallest size $f(n)$ of an n-universal point set?

Universal Sets

Definition: n-universal point set S :
\forall planar n-vertex graph G can be drawn straight-line on S.

Problem: What is the smallest size $f(n)$ of an n-universal point set?

Problem (Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw, Mitchell):
What is the smallest size σ of a collection of planar graphs without a simultaneous embedding (conflict collection)?

Upper Bounds

- $(2 n-4) \times(n-2)$ grid is n-universal, hence $f(n)=O\left(n^{2}\right)$ [De Fraysseix, Pach, Pollack '90]
- $f(n) \leq \frac{n^{2}}{4}-O(n)$
[Bannister, Cheng, Devanny, Eppstein '14]

Upper Bounds

- $(2 n-4) \times(n-2)$ grid is n-universal, hence $f(n)=O\left(n^{2}\right)$ [De Fraysseix, Pach, Pollack '90]
- $f(n) \leq \frac{n^{2}}{4}-O(n)$
[Bannister, Cheng, Devanny, Eppstein '14]
- $f_{s}(n) \leq O\left(n^{3 / 2} \log n\right)$ for stacked triangulations [Fulek and Tóth '15]

Lower Bounds

- Counting arguments
- $f(n) \geq n+\Omega(\sqrt{n})$ [De Fraysseix, Pach, Pollack '90]
- $f(n) \geq f_{s}(n) \geq 1.235 n(1+o(1))$ [Kurowski '04]

Lower Bounds

- Counting arguments
- $f(n) \geq n+\Omega(\sqrt{n})$ [De Fraysseix, Pach, Pollack '90]
- $f(n) \geq f_{s}(n) \geq 1.235 n(1+o(1))$ [Kurowski '04]
- $f(n)=n$ for $n \leq 10$, $f(n) \geq f_{s}(n) \geq n+1$ for $n \geq 15$, and $\sigma \leq 7393$ [Cardinal, Hoffmann, Kusters '15]

Lower Bounds

- Counting arguments
- $f(n) \geq n+\Omega(\sqrt{n})$ [De Fraysseix, Pach, Pollack '90]
- $f(n) \geq f_{s}(n) 1.235 n(1+o(1))$ [Kurowski '04]
$|S| \geq 1.293 n(1+o(1)) \quad \nexists 11$-universal set on 11 points
- $f(n)=n$ for $n \leq 10$.
$f(n) \geq f_{s}(n) \geq n+1$ for $n \geq 15$, and
$\sigma \leq 7393$ CCardinal, Hoffmann, Kusters '15]

$$
\sigma \leq 49
$$

New Lower Bound

Theorem (S., Schrezenmaier, Steiner '19).

$$
f_{s}(n) \geq(1.293-o(1)) n
$$

New Lower Bound

Starting from a triangle, a stacked triangulation is built up by repeated insertions of degree-3-vertices into triangles.

New Lower Bound

Starting from a triangle, a stacked triangulation is built up by repeated insertions of degree-3-vertices into triangles.

New Lower Bound

Starting from a triangle, a stacked triangulation is built up by repeated insertions of degree-3-vertices into triangles.

New Lower Bound

Starting from a triangle, a stacked triangulation is built up by repeated insertions of degree-3-vertices into triangles.

New Lower Bound

Starting from a triangle, a stacked triangulation is built up by repeated insertions of degree-3-vertices into triangles.

Lemma (Cardinal, Hoffmann, Kusters '15).
The induced labeling is unique.

- 3

New Lower Bound

Starting from a triangle, a stacked triangulation is built up by repeated insertions of degree-3-vertices into triangles.

Lemma (Cardinal, Hoffmann, Kusters '15).
The induced labeling is unique.
Obsv. \# of labeled stacked triangulations: $2^{n-4}(n-3)$!

New Lower Bound

Starting from a triangle, a stacked triangulation is built up by repeated insertions of degree-3-vertices into triangles.

Lemma (Cardinal, Hoffmann, Kusters '15).
The induced labeling is unique.
Obsv. \# of labeled stacked triangulations: $2^{n-4}(n-3)$!

Corollary. Let m be the size of an n-universal set. Then
$2^{n-4}(n-3)!\leq$ \# labelings of n out of m points $=\frac{m!}{(m-n)!}$

New Lower Bound

Theorem (S., Schrezenmaier, Steiner '19).

$$
f_{s}(n) \geq(1.293-o(1)) n
$$

11-Universal Sets

Theorem (S., Schrezenmaier, Steiner '19).
There is a set of 49 stacked triangulations on 11 vertices without a simultaneous embedding, hence

$$
f(11)=f_{s}(11)=12 \quad \text { and } \quad \sigma \leq 49 .
$$

SAT Model

SAT model for a fixed set S and fixed graph $G=(V, E)$:

- $M_{i, j} \ldots$ vertex v_{i} is mapped to point p_{j}

SAT Model

SAT model for a fixed set S and fixed graph $G=(V, E)$:

- $M_{i, j} \ldots$ vertex v_{i} is mapped to point p_{j}
- Injective mapping $V \rightarrow S$
every vertex v_{i} has to be mapped:

$$
\bigvee_{j} M_{i, j}
$$

no two vertices $v_{i_{1}}, v_{i_{2}}$ mapped to the same point:

$$
\neg M_{i_{1}, j} \vee \neg M_{i_{2}, j}
$$

SAT Model

SAT model for a fixed set S and fixed graph $G=(V, E)$:

- $M_{i, j} \ldots$ vertex v_{i} is mapped to point p_{j}
- Injective mapping $V \rightarrow S$
- No two edges cross
\forall pair of edges $\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right)$
\forall pair of crossing segments $\left(p_{1}, p_{2}\right),\left(p_{3}, p_{4}\right)$

$$
\neg M_{v_{1}, p_{1}} \vee \neg M_{v_{2}, p_{2}} \vee \neg M_{v_{3}, p_{3}} \vee \neg M_{v_{4}, p_{4}}
$$

SAT Model

SAT model for a fixed set S and fixed graph $G=(V, E)$:

- $M_{i, j} \ldots$ vertex v_{i} is mapped to point p_{j}
- Injective mapping $V \rightarrow S$
- No two edges cross
depends on S
\forall pair of edges $\left(v_{1}, v_{2}\right)$, $\left(v_{3}, v_{4}\right)$
\forall pair of crossing segments $\left(p_{1}, p_{2}\right),\left(p_{3}, p_{4}\right)$

$$
\neg M_{v_{1}, p_{1}} \vee \neg M_{v_{2}, p_{2}} \vee \neg M_{v_{3}, p_{3}} \vee \neg M_{v_{4}, p_{4}}
$$

SAT Model

All in one SAT instance:

- all graphs simultaneously
- point sets via signotope axioms

SAT Model

All in one SAT instance:

- all graphs simultaneously
- point sets via signotope axioms
. . . but solvers do not terminate ...

Computer Proof

- Enumerate all triangulations on (11)vertices
via plantri (planar graph generator by Brinkmann and McKay)

Computer Proof

- Enumerate all triangulations on (11)vertices
- Enumerate all order types on (11) points
$(2,343,203,071)$
via signotope/chirotope axioms, 20 CPU hours, 100 GB storage

Computer Proof

- Enumerate all triangulations on (11)vertices
- Enumerate all order types on (11) points
$(2,343,203,071)$
- Test necessary criterion on point sets

Computer Proof

- Enumerate all triangulations on (11)vertices
- Enumerate all order types on (11) points
$(2,343,203,071)$
- Test necessary criterion on point sets

Computer Proof

- Enumerate all triangulations on (11)vertices
- Enumerate all order types on (11) points
- Test necessary criterion on point sets
- Pick \mathcal{G} as set of 11 -vertex triangulations with maximum degree 10 and test each pair S and G
via SAT solver, priority queue

Computer Proof

- Enumerate all triangulations on (11)vertices
- Enumerate all order types on (11) points
- Test necessary criterion on point sets
- Pick \mathcal{G} as set of 11 -vertex triangulations with maximum degree 10 and test each pair S and G
- For remaining \mathcal{G}-universal sets, create 0-1-matrix and use IP to find minimal set of triangulations which need to be added (Minimum set cover)

Computer Proof

- Enumerate all triangulations on (11)vertices
- Enumerate all order types on (11) points
- Test necessary criterion on point sets
- Pick \mathcal{G} as set of 11 -vertex triangulations with maximum degree 10 and test each pair S and G
- For remaining \mathcal{G}-universal sets, create 0-1-matrix and use IP to find minimal set of triangulations which need to be added (Minimum set cover)
- 500 CPU days later:

Verification

- run program on conflict graphs, only phase $1+2$ (of 6)

Verification

- run program on conflict graphs, only phase $1+2$ (of 6)
- independent SAT model
axiomize point set S (chirotope/signotope)
mapping $S \rightarrow V$ for each conflict graph (as before)

Verification

- run program on conflict graphs, only phase $1+2$ (of 6)
- independent SAT model
axiomize point set S (chirotope/signotope)
mapping $S \rightarrow V$ for each conflict graph (as before)
- picosat traced a bug in GD version, see full version (23 "conflict" graphs) (49 conflict graphs)

Verification

- picosat traced a bug in GD version, see full version (23 " conflict" graphs) (49 conflict graphs)

Verification

- picosat traced a bug in GD version, see full version (23 "conflict" graphs) (49 conflict graphs)

Verification

$$
\left.\begin{array}{rl}
\operatorname{if}((s l->\operatorname{get}(\quad 0, i) & =1 \& \& \operatorname{sl->} \operatorname{get}(i, n-1)
\end{array}==1\right)
$$

0

- picosat traced a bug in GD version, see full version
(23 " conflict" graphs) (49 conflict graphs)

Verification

- picosat traced a bug in GD version, see full version
(23 " conflict" graphs) (49 conflict graphs)

Thank you for your attention!

