Sketched Representations and Orthogonal Planarity of Bounded Treewidth Graphs

Emilio Di Giacomo, Giuseppe Liotta, <u>Fabrizio Montecchiani</u> University of Perugia, Italy

GD 2019, September 17-20, 2019, Průhonice/Prague

Orthogonal Drawings

An orthogonal drawing of a planar graph with max degree 4 is a planar drawing where each edge is drawn as a chain of horizontal and vertical segments.

Orthogonal Drawings

An orthogonal drawing of a planar graph with max degree 4 is a planar drawing where each edge is drawn as a chain of horizontal and vertical segments.

Orthogonal Drawings

An orthogonal drawing of a planar graph with max degree 4 is a planar drawing where each edge is drawn as a chain of horizontal and vertical segments.

Every planar graph with max degree 4 (except the octahedron) admits an orthogonal drawing with at most 2 bends per edge and at most 2n + 2 bends in total [Biedl & Kant 1998].

Orthogonal Planarity

ORTHOGONALPLANARITY: Given a planar graph G and an integer b, does G admit an orthogonal drawing with at most b bends?

Orthogonal Planarity

ORTHOGONALPLANARITY: Given a planar graph G and an integer b, does G admit an orthogonal drawing with at most b bends?

- **NP-complete** for b = 0 [Garg & Tamassia 2001].
 - NP-hard to approximate the minimum number of bends with an $O(n^{1-\varepsilon})$ error ($\varepsilon > 0$) [Garg & Tamassia 2001].
- If G is 2-connected, FPT algorithm parametrized by the number of degree-4 vertices [Didimo & Liotta 1998].
- $O(n^4)$ -time algorithm for series-parallel graphs [Di Battista, Liotta, Vargiu 1998].

HV-PLANARITY: Given planar graph G whose edges are each labeled H (horizontal) or V (vertical), does G admit a rectilinear drawing in which edge directions are consistent with their labels?

HV-PLANARITY: Given planar graph G whose edges are each labeled H (horizontal) or V (vertical), does G admit a rectilinear drawing in which edge directions are consistent with their labels?

- NP-complete [Didimo, Liotta, Patrignani 2019].
- $O(n^4)$ -time algorithm for series-parallel graphs [Didimo, Liotta, Patrignani 2019].

FLEXDRAW: Given a planar graph G whose edges have integer weights, does G admit an orthogonal drawing where each edge has a number of bends that is at most its weight?

FLEXDRAW: Given a planar graph G whose edges have integer weights, does G admit an orthogonal drawing where each edge has a number of bends that is at most its weight?

- NP-complete [Garg & Tamassia 2001; Bläsius, Krug, Rutter 2014].
- $O(n^2)$ -time algorithm if weights are positive [Bläsius, Krug, Rutter 2014].
- FPT algorithm parametrized by the number of edges that cannot be bent [Bläsius, Lehmann, Rutter 2016].

Contribution

Contribution

Main Theorem: ORTHOGONALPLANARITY (HV-PLANARITY, FLEXDRAW) can be solved in polynomial time for graphs of bounded treewidth.

- The problems lie in the XP class parameterized by treewidth (time complexity is $n^{g(k)}$, where k is the treewidth).
- Can be used to minimize bends.

Contribution

Main Theorem: ORTHOGONALPLANARITY (HV-PLANARITY, FLEXDRAW) can be solved in polynomial time for graphs of bounded treewidth.

- The problems lie in the XP class parameterized by treewidth (time complexity is $n^{g(k)}$, where k is the treewidth).
- Can be used to minimize bends.

Corollary: ORTHOGONALPLANARITY (HV-PLANARITY) can be solved in $O(n^3 \log n)$ time for series-parallel graphs.

• Improves on previous $O(n^4)$ bounds [Di Battista, Liotta, Vargiu 1998; Didimo, Liotta, Patrignani 2019].

Proof Ideas & Tools

An FPT Algorithm

 Constructive proof based on FPT algorithm with parameters: treewidth k, num. of degree-2 vertices σ and num. of bends b.

An FPT Algorithm

 Constructive proof based on FPT algorithm with parameters: treewidth k, num. of degree-2 vertices σ and num. of bends b.

Fine-grained Theorem: Let G be an *n*-vertex planar graph. Given a tree-decomposition of G of width k, there is an algorithm that decides ORTHOGONALPLANARITY in $f(k, \sigma, b) \cdot n$ time, where $f(k, \sigma, b) = k^{O(k)}(\sigma + b)^k \log(\sigma + b)$. The algorithm computes a drawing of G, if one exists.

A tree-decomposition of a graph G = (V, E) is a pair (\mathcal{X}, T) s.t.: • $\mathcal{X} = \{X_1, X_2, \dots, X_\ell\}$ is a set of subsets of V called bags,

A tree-decomposition of a graph G = (V, E) is a pair (\mathcal{X}, T) s.t.:

- $\mathcal{X} = \{X_1, X_2, \dots, X_\ell\}$ is a set of subsets of V called bags,
- T is a tree, each node is mapped to a bag of \mathcal{X} ,

A tree-decomposition of a graph G = (V, E) is a pair (\mathcal{X}, T) s.t.: • $\mathcal{X} = \{X_1, X_2, \dots, X_\ell\}$ is a set of subsets of V called bags, • T is a tree, each node is mapped to a bag of \mathcal{X} , • $\forall (u, v) \in E, \exists X_i : u, v \in X_i,$ • $\forall v \in V$ the bags containing v induces a non-empty subtree of T

A tree-decomposition of a graph G = (V, E) is a pair (\mathcal{X}, T) s.t.: • $\mathcal{X} = \{X_1, X_2, \dots, X_\ell\}$ is a set of subsets of V called bags, • T is a tree, each node is mapped to a bag of \mathcal{X} , • $\forall (u, v) \in E, \exists X_i : u, v \in X_i,$ • $\forall v \in V$ the bags containing v induces a non-empty subtree of TThe width of (\mathcal{X}, T) is $\max_{i=1}^{\ell} |X_i| - 1$. The treewidth of G is the minimum width over all its tree-decompositions.

 (\mathcal{X}, T) is nice if T is a binary rooted tree and:

• (JOIN) if X_i has 2 children X_j and $X_{j'}$ then $X_i = X_j = X_{j'}$

 (\mathcal{X}, T) is nice if T is a binary rooted tree and:

- (JOIN) if X_i has 2 children X_j and $X_{j'}$ then $X_i = X_j = X_{j'}$
- if X_i of T has only 1 child X_j then there is $v \in V$ s.t. either - (INTRODUCE) $X_i = X_j \cup \{v\}$, or

$$-(FORGET) X_i \cup \{v\} = X_j$$

IDEA: design a dynamic programming algorithm based on a nice tree-decomposition of the graph

IDEA: design a dynamic programming algorithm based on a nice tree-decomposition of the graph

INTRODUCE vertex in all drawings

IDEA: design a dynamic programming algorithm based on a nice tree-decomposition of the graph

FORGET (DEACTIVATE) vertex in all drawings

IDEA: design a dynamic programming algorithm based on a nice tree-decomposition of the graph

JOIN all pairs of drawings

IDEA: design a dynamic programming algorithm based on a nice tree-decomposition of the graph

TODO: design abstract (small) records to replace drawings!

Orthogonal Representations

An orthogonal representation of a plane graph G represents an equivalence class of orthogonal drawings with the same "shape" [Tamassia, 1987].

Orthogonal Representations

An orthogonal representation of a <u>plane</u> graph G represents an equivalence class of orthogonal drawings with the same "shape" [Tamassia, 1987].

It is a <u>feasible</u> assignment of angles to each vertex-face incidence and of integers to each edge-face incidence, where feasible means:

2) The sum of the angles inside a face comply with an orthogonal polygon $\frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + 2 \cdot \frac{\pi}{2} - \frac{\pi}{2} = \pi(4-2) = 2\pi$

GOAL: Define "small" records to be assigned to bags

GOAL: Define "small" records to be assigned to bags

GOAL: Define "small" records to be assigned to bags

* Orthogonal sketches also contain dummy vertices/edges to preserve connectivity

Lemma: There are $k^{O(k)}(\sigma + b)^k$ distinct orthogonal sketches.

* Orthogonal sketches also contain dummy vertices/edges to preserve connectivity

Lemma: There are $k^{O(k)}(\sigma + b)^k$ distinct orthogonal sketches.

• $k^{O(k)}$ possible embeddings on O(k) vertices

Lemma: There are $k^{O(k)}(\sigma + b)^k$ distinct orthogonal sketches.

- $k^{O(k)}$ possible embeddings on O(k) vertices
 - For each embedding we count:
 - * Possible vertex-face angle assignments are $2^{O(\mathbf{k})}$

Lemma: There are $k^{O(k)}(\sigma + b)^k$ distinct orthogonal sketches.

- $k^{O(k)}$ possible embeddings on O(k) vertices
 - For each embedding we count:
 - * Possible vertex-face angle assignments are $2^{O(\mathbf{k})}$
 - * Possible roll-up number assignments are $(\sigma + b)^k$

Lemma: There are $k^{O(k)}(\sigma + b)^k$ distinct orthogonal sketches.

- $k^{O(k)}$ possible embeddings on O(k) vertices
 - For each embedding we count:
 - * Possible vertex-face angle assignments are $2^{O(\mathbf{k})}$
 - * Possible roll-up number assignments are $(\sigma + b)^k$

$$|\rho(u,v)| \le \sigma + b + 4$$

ROLL-UP how much a facial path rolls up depends on the number of NUMBER bends and degree-2 vertices in the face

Lemma: There are $k^{O(k)}(\sigma + b)^k$ distinct orthogonal sketches.

- $k^{O(k)}$ possible embeddings on O(k) vertices
 - For each embedding we count:
 - * Possible vertex-face angle assignments are $2^{O(\mathbf{k})}$
 - * Possible roll-up number assignments are $(\sigma + b)^k$

$$|\rho(u,v)| \le \sigma + b + 4$$

ROLL-UP how much a facial path rolls up depends on the number of bends and degree-2 vertices in the face

Roll-up numbers are not independent of each another, choosing k of them along a spanning tree fixes all the others

Introduce Operation

INPUT: a set S of orthogonal sketches of a bag X and a vertex \bullet

Introduce Operation

INPUT: a set S of orthogonal sketches of a bag X and a vertex \bullet for each orthogonal sketch $o \in S$: identify faces where \bullet can be placed;

Introduce Operation

INPUT: a set S of orthogonal sketches of a bag X and a vertex \bullet for each orthogonal sketch $o \in S$:

- identify faces where can be placed;
- foreach planar embedding:
 - generate all roll-up number assignments for the new edges; keep only the shapes that are valid;

Forget Operation

INPUT: a set S of orthogonal sketches of a bag X and a vertex ulletUpdate each orthogonal sketch $o \in S$

Join Operation

INPUT: 2 sets of orthogonal sketches to be merged at a bag XMore complex procedure to ensure efficiency.

Open Problems & Future Work

Open Problems & Future Work

1. FPT algorithm for ORTHOGONALPLANARITY parametrized by treewidth and number of bends?

2. Subcubic time complexity for series-parallel graphs?

3. UPWARDPLANARITY and WINDROSEPLANARITY admit similar combinatorial characterizations based on vertex-angles.

Our approach can be extended to prove that these problems can be solved in polynomial time on graphs of bounded treewidth.

THANK YOU!