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Orthogonal Drawings

An orthogonal drawing of a planar graph with max degree 4 is a
planar drawing where each edge is drawn as a chain of horizontal
and vertical segments.
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Orthogonal Drawings

An orthogonal drawing of a planar graph with max degree 4 is a
planar drawing where each edge is drawn as a chain of horizontal
and vertical segments.

Orthogonal drawing
with 7 bends

Orthogonal drawing
with 4 bends

Rectilinear (no bends)
drawing

Every planar graph with max degree 4 (except the octahedron)
admits an orthogonal drawing with at most 2 bends per edge and
at most 2n + 2 bends in total [Biedl & Kant 1998].
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Orthogonal Planarity

OrthogonalPlanarity: Given a planar graph G and an integer
b, does G admit an orthogonal drawing with at most b bends?

〈G, b = 4〉
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Orthogonal Planarity

OrthogonalPlanarity: Given a planar graph G and an integer
b, does G admit an orthogonal drawing with at most b bends?

• NP-complete for b = 0 [Garg & Tamassia 2001].

• NP-hard to approximate the minimum number of bends
with an O(n1−ε) error (ε > 0) [Garg & Tamassia 2001].

• If G is 2-connected, FPT algorithm parametrized by the
number of degree-4 vertices [Didimo & Liotta 1998].

• O(n4)-time algorithm for series-parallel graphs [Di Battista,

Liotta, Vargiu 1998].
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Related Problems

HV-Planarity: Given planar graph G whose edges are each
labeled H (horizontal) or V (vertical), does G admit a rectilinear
drawing in which edge directions are consistent with their labels?
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Related Problems

HV-Planarity: Given planar graph G whose edges are each
labeled H (horizontal) or V (vertical), does G admit a rectilinear
drawing in which edge directions are consistent with their labels?

• NP-complete [Didimo, Liotta, Patrignani 2019].

• O(n4)-time algorithm for series-parallel graphs [Didimo, Liotta,

Patrignani 2019].
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Related Problems

FlexDraw: Given a planar graph G whose edges have integer
weights, does G admit an orthogonal drawing where each edge
has a number of bends that is at most its weight?
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Related Problems

FlexDraw: Given a planar graph G whose edges have integer
weights, does G admit an orthogonal drawing where each edge
has a number of bends that is at most its weight?

• NP-complete [Garg & Tamassia 2001; Bläsius, Krug, Rutter 2014].

• O(n2)-time algorithm if weights are positive [Bläsius, Krug, Rutter

2014].

• FPT algorithm parametrized by the number of edges that
cannot be bent [Bläsius, Lehmann, Rutter 2016].
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Contribution

Main Theorem: OrthogonalPlanarity (HV-Planarity,
FlexDraw) can be solved in polynomial time for graphs of
bounded treewidth.

• The problems lie in the XP class parameterized by treewidth
(time complexity is ng(k), where k is the treewidth).

• Can be used to minimize bends.



Contribution

Main Theorem: OrthogonalPlanarity (HV-Planarity,
FlexDraw) can be solved in polynomial time for graphs of
bounded treewidth.

Corollary: OrthogonalPlanarity (HV-Planarity) can
be solved in O(n3 log n) time for series-parallel graphs.

• The problems lie in the XP class parameterized by treewidth
(time complexity is ng(k), where k is the treewidth).

• Can be used to minimize bends.

• Improves on previous O(n4) bounds [Di Battista, Liotta, Vargiu

1998; Didimo, Liotta, Patrignani 2019].



Proof Ideas & Tools



An FPT Algorithm

• Constructive proof based on FPT algorithm with parameters:
treewidth k, num. of degree-2 vertices σ and num. of bends b.



An FPT Algorithm

Fine-grained Theorem: Let G be an n-vertex planar graph.
Given a tree-decomposition of G of width k, there is an algorithm
that decides OrthogonalPlanarity in f(k, σ, b) · n time,
where f(k, σ, b) = kO(k)(σ + b)k log(σ + b).
The algorithm computes a drawing of G, if one exists.

• Constructive proof based on FPT algorithm with parameters:
treewidth k, num. of degree-2 vertices σ and num. of bends b.



Tree-decomposition

A tree-decomposition of a graph G = (V,E) is a pair (X , T ) s.t.:
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• ∀(u, v) ∈ E, ∃Xi : u, v ∈ Xi,
• ∀v ∈ V the bags containing v induces a non-empty subtree of T

• T is a tree, each node is mapped to a bag of X ,

1 2

3

4
5

6

7 8



Tree-decomposition

A tree-decomposition of a graph G = (V,E) is a pair (X , T ) s.t.:

3 6 7

3 7 8

4 7 83 1 3 52

7 8

4 8 53

• X = {X1, X2, . . . , X`} is a set of subsets of V called bags,

• ∀(u, v) ∈ E, ∃Xi : u, v ∈ Xi,
• ∀v ∈ V the bags containing v induces a non-empty subtree of T

The width of (X , T ) is max`
i=1 |Xi| − 1.

The treewidth of G is the minimum width over all its
tree-decompositions.

• T is a tree, each node is mapped to a bag of X ,
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Nice Tree-decomposition

(X , T ) is nice if T is a binary rooted tree and:
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Nice Tree-decomposition

(X , T ) is nice if T is a binary rooted tree and:

• (JOIN) if Xi has 2 children Xj and Xj′ then Xi = Xj = Xj′

1 2

3

4
5

6

7 8

378

378

4 853
4 853 4 853

378

367

367 367



Nice Tree-decomposition

(X , T ) is nice if T is a binary rooted tree and:

• if Xi of T has only 1 child Xj then there is v ∈ V s.t. either

• (JOIN) if Xi has 2 children Xj and Xj′ then Xi = Xj = Xj′
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– (INTRODUCE) Xi = Xj ∪ {v}, or



Nice tree decomposition

IDEA: design a dynamic programming algorithm based on a nice
tree-decomposition of the graph



Nice tree decomposition

IDEA: design a dynamic programming algorithm based on a nice
tree-decomposition of the graph
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Nice tree decomposition

IDEA: design a dynamic programming algorithm based on a nice
tree-decomposition of the graph
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Nice tree decomposition

IDEA: design a dynamic programming algorithm based on a nice
tree-decomposition of the graph

67

37

378

378

35

354

4 853
4 853 4 853

4 83

4 783

378

78 1 32

12367

367

36

135

1 352

367

JOIN all pairs of drawings

4
3

5

6

7 8

1 2

3
4

5

8

1 2

3
4

5

6

7 8



Nice tree decomposition

IDEA: design a dynamic programming algorithm based on a nice
tree-decomposition of the graph

TODO: design abstract (small) records to replace drawings!



Orthogonal Representations

An orthogonal representation of a plane graph G represents an
equivalence class of orthogonal drawings with the same “shape”
[Tamassia, 1987].
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Orthogonal Representations

An orthogonal representation of a plane graph G represents an
equivalence class of orthogonal drawings with the same “shape”
[Tamassia, 1987].

It is a feasible assignment of angles to each vertex-face incidence
and of integers to each edge-face incidence, where feasible means:
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Orthogonal Sketches

ABSTRACT AWAY
FROM GEOMETRY:
ORTHOGONAL REP.

GOAL: Define “small” records to be assigned to bags
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Orthogonal Sketches

ABSTRACT AWAY
FROM GEOMETRY:
ORTHOGONAL REP.

FOCUS ON ACTIVE
VERTICES (BAG)

GOAL: Define “small” records to be assigned to bags
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Orthogonal Sketches

ABSTRACT AWAY
FROM GEOMETRY:
ORTHOGONAL REP.

FOCUS ON ACTIVE
VERTICES (BAG)

ABSTRACT AWAY FROM
INACTIVE VERTICES:
ORTHOGONAL SKETCHES∗

GOAL: Define “small” records to be assigned to bags

* Orthogonal sketches also contain dummy vertices/edges to preserve connectivity
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Orthogonal Sketches

ABSTRACT AWAY
FROM GEOMETRY:
ORTHOGONAL REP.

FOCUS ON ACTIVE
VERTICES (BAG)

ABSTRACT AWAY FROM
INACTIVE VERTICES:
ORTHOGONAL SKETCHES∗

Lemma: There are kO(k)(σ + b)k distinct orthogonal sketches.

* Orthogonal sketches also contain dummy vertices/edges to preserve connectivity
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Lemma: There are kO(k)(σ + b)k distinct orthogonal sketches.

• kO(k) possible embeddings on O(k) vertices
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Orthogonal Sketches

Lemma: There are kO(k)(σ + b)k distinct orthogonal sketches.

• kO(k) possible embeddings on O(k) vertices

– For each embedding we count:

* Possible vertex-face angle assignments are 2O(k)

* Possible roll-up number assignments are (σ + b)k

|ρ(u, v)| ≤ σ + b+ 4
how much a facial path rolls up depends on the number of
bends and degree-2 vertices in the face
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Orthogonal Sketches

Lemma: There are kO(k)(σ + b)k distinct orthogonal sketches.

• kO(k) possible embeddings on O(k) vertices

– For each embedding we count:

* Possible vertex-face angle assignments are 2O(k)

* Possible roll-up number assignments are (σ + b)k

|ρ(u, v)| ≤ σ + b+ 4
how much a facial path rolls up depends on the number of
bends and degree-2 vertices in the face

Roll-up numbers are not independent of each another,
choosing k of them along a spanning tree fixes all the others
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Introduce Operation

INPUT: a set S of orthogonal sketches of a bag X and a vertex v



Introduce Operation

INPUT: a set S of orthogonal sketches of a bag X and a vertex v

for each orthogonal sketch o ∈ S:

identify faces where v can be placed;
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Introduce Operation

INPUT: a set S of orthogonal sketches of a bag X and a vertex v

for each orthogonal sketch o ∈ S:

identify faces where v can be placed;

foreach planar embedding:

generate all roll-up number assignments for the new edges;

keep only the shapes that are valid;
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Forget Operation

INPUT: a set S of orthogonal sketches of a bag X and a vertex v
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Join Operation

INPUT: 2 sets of orthogonal sketches to be merged at a bag X
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Open Problems & Future Work



Open Problems & Future Work

1. FPT algorithm for OrthogonalPlanarity parametrized by
treewidth and number of bends?

2. Subcubic time complexity for series-parallel graphs?

3. UpwardPlanarity and WindrosePlanarity
admit similar combinatorial characterizations based on
vertex-angles.

Our approach can be extended to prove that these
problems can be solved in polynomial time on graphs
of bounded treewidth.



Open Problems & Future Work

THANK YOU!


