Sketched Representations and Orthogonal Planarity of Bounded Treewidth Graphs

Emilio Di Giacomo, Giuseppe Liotta, Fabrizio Montecchiani University of Perugia, Italy

GD 2019, September 17-20, 2019, Průhonice/Prague

Orthogonal Drawings

An orthogonal drawing of a planar graph with max degree 4 is a planar drawing where each edge is drawn as a chain of horizontal and vertical segments.

Orthogonal Drawings

An orthogonal drawing of a planar graph with max degree 4 is a planar drawing where each edge is drawn as a chain of horizontal and vertical segments.

Orthogonal Drawings

An orthogonal drawing of a planar graph with max degree 4 is a planar drawing where each edge is drawn as a chain of horizontal and vertical segments.

Every planar graph with max degree 4 (except the octahedron) admits an orthogonal drawing with at most 2 bends per edge and at most $2 \mathbf{n}+2$ bends in total [Biedl \& Kant 1998].

Orthogonal Planarity

OrthogonalPlanarity: Given a planar graph G and an integer b, does G admit an orthogonal drawing with at most b bends?

$$
\langle G, b=4\rangle
$$

Orthogonal Planarity

OrthogonalPlanarity: Given a planar graph G and an integer b, does G admit an orthogonal drawing with at most b bends?

- NP-complete for $b=0$ [Garg \& Tamassia 2001].
- NP-hard to approximate the minimum number of bends with an $O\left(n^{1-\varepsilon}\right)$ error $(\varepsilon>0)$ [Garg \& Tamassia 2001].
- If G is 2 -connected, FPT algorithm parametrized by the number of degree-4 vertices [Didimo \& Liotta 1998].
- $O\left(n^{4}\right)$-time algorithm for series-parallel graphs [Di Battista, Liotta, Vargiu 1998].

$$
\langle G, b=4\rangle
$$

Related Problems

HV-Planarity: Given planar graph G whose edges are each labeled H (horizontal) or V (vertical), does G admit a rectilinear drawing in which edge directions are consistent with their labels?

Related Problems

HV-Planarity: Given planar graph G whose edges are each labeled H (horizontal) or V (vertical), does G admit a rectilinear drawing in which edge directions are consistent with their labels?

- NP-complete [Didimo, Liotta, Patrignani 2019].
- $O\left(n^{4}\right)$-time algorithm for series-parallel graphs [Didimo, Liotta, Patrignani 2019].

Related Problems

FlexDraw: Given a planar graph G whose edges have integer weights, does G admit an orthogonal drawing where each edge has a number of bends that is at most its weight?

Related Problems

FlexDraw: Given a planar graph G whose edges have integer weights, does G admit an orthogonal drawing where each edge has a number of bends that is at most its weight?

- NP-complete [Garg \& Tamassia 2001; Bläsius, Krug, Rutter 2014].
- $O\left(n^{2}\right)$-time algorithm if weights are positive [Bläsius, Krug, Rutter 2014].
- FPT algorithm parametrized by the number of edges that cannot be bent [Bläsius, Lehmann, Rutter 2016].

Contribution

Contribution

Main Theorem: OrthogonalPlanarity (HV-Planarity, FlexDraw) can be solved in polynomial time for graphs of bounded treewidth.

- The problems lie in the XP class parameterized by treewidth (time complexity is $n^{g(k)}$, where k is the treewidth).
- Can be used to minimize bends.

Contribution

Main Theorem: OrthogonalPlanarity (HV-Planarity, FlexDraw) can be solved in polynomial time for graphs of bounded treewidth.

- The problems lie in the XP class parameterized by treewidth (time complexity is $n^{g(k)}$, where k is the treewidth).
- Can be used to minimize bends.

Corollary: OrthogonalPlanarity (HV-Planarity) can be solved in $O\left(n^{3} \log n\right)$ time for series-parallel graphs.

- Improves on previous $O\left(n^{4}\right)$ bounds [Di Battista, Liotta, Vargiu 1998; Didimo, Liotta, Patrignani 2019].

Proof Ideas \& Tools

An FPT Algorithm

- Constructive proof based on FPT algorithm with parameters: treewidth k, num. of degree- 2 vertices σ and num. of bends b.

An FPT Algorithm

- Constructive proof based on FPT algorithm with parameters: treewidth k, num. of degree- 2 vertices σ and num. of bends b.

Fine-grained Theorem: Let G be an n-vertex planar graph. Given a tree-decomposition of G of width k, there is an algorithm that decides OrthogonalPlanarity in $f(k, \sigma, b) \cdot n$ time, where $f(k, \sigma, b)=k^{O(k)}(\sigma+b)^{k} \log (\sigma+b)$.
The algorithm computes a drawing of G, if one exists.

Tree-decomposition

A tree-decomposition of a graph $G=(V, E)$ is a pair (\mathcal{X}, T) s.t.:

Tree-decomposition

A tree-decomposition of a graph $G=(V, E)$ is a pair (\mathcal{X}, T) s.t.:

- $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{\ell}\right\}$ is a set of subsets of V called bags,

Tree-decomposition

A tree-decomposition of a graph $G=(V, E)$ is a pair (\mathcal{X}, T) s.t.:

- $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{\ell}\right\}$ is a set of subsets of V called bags,
- T is a tree, each node is mapped to a bag of \mathcal{X},

Tree-decomposition

A tree-decomposition of a graph $G=(V, E)$ is a pair (\mathcal{X}, T) s.t.:

- $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{\ell}\right\}$ is a set of subsets of V called bags,
- T is a tree, each node is mapped to a bag of \mathcal{X},
- $\forall(u, v) \in E, \exists X_{i}: u, v \in X_{i}$,
- $\forall v \in V$ the bags containing v induces a non-empty subtree of T

Tree-decomposition

A tree-decomposition of a graph $G=(V, E)$ is a pair (\mathcal{X}, T) s.t.:

- $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{\ell}\right\}$ is a set of subsets of V called bags,
- T is a tree, each node is mapped to a bag of \mathcal{X},
- $\forall(u, v) \in E, \exists X_{i}: u, v \in X_{i}$,
- $\forall v \in V$ the bags containing v induces a non-empty subtree of T

The width of (\mathcal{X}, T) is $\max _{i=1}^{\ell}\left|X_{i}\right|-1$.
The treewidth of G is the minimum width over all its tree-decompositions.

Nice Tree-decomposition

(\mathcal{X}, T) is nice if T is a binary rooted tree and:

Nice Tree-decomposition

(\mathcal{X}, T) is nice if T is a binary rooted tree and:

- (JOIN) if X_{i} has 2 children X_{j} and $X_{j^{\prime}}$ then $X_{i}=X_{j}=X_{j^{\prime}}$

Nice Tree-decomposition

(\mathcal{X}, T) is nice if T is a binary rooted tree and:

- (JOIN) if X_{i} has 2 children X_{j} and $X_{j^{\prime}}$ then $X_{i}=X_{j}=X_{j^{\prime}}$
- if X_{i} of T has only 1 child X_{j} then there is $v \in V$ s.t. either
- (INTRODUCE) $X_{i}=X_{j} \cup\{v\}$, or
$-($ FORGET $) X_{i} \cup\{v\}=X_{j}$

Nice tree decomposition

IDEA: design a dynamic programming algorithm based on a nice tree-decomposition of the graph

Nice tree decomposition

IDEA: design a dynamic programming algorithm based on a nice tree-decomposition of the graph

INTRODUCE vertex in all drawings

Nice tree decomposition

IDEA: design a dynamic programming algorithm based on a nice tree-decomposition of the graph

FORGET (DEACTIVATE) vertex in all drawings

Nice tree decomposition

IDEA: design a dynamic programming algorithm based on a nice tree-decomposition of the graph

JOIN all pairs of drawings

Nice tree decomposition

IDEA: design a dynamic programming algorithm based on a nice tree-decomposition of the graph

TODO: design abstract (small) records to replace drawings!

Orthogonal Representations

An orthogonal representation of a plane graph G represents an equivalence class of orthogonal drawings with the same "shape" [Tamassia, 1987].

Orthogonal Representations

An orthogonal representation of a plane graph G represents an equivalence class of orthogonal drawings with the same "shape" [Tamassia, 1987].

It is a feasible assignment of angles to each vertex-face incidence and of integers to each edge-face incidence, where feasible means:

2) The sum of the angles inside a face comply with an orthogonal polygon $\frac{\pi}{2}+\frac{\pi}{2}+\frac{\pi}{2}+2 \cdot \frac{\pi}{2}-\frac{\pi}{2}=$ $\pi(4-2)=2 \pi$

Orthogonal Sketches

GOAL: Define "small" records to be assigned to bags

ABSTRACT AWAY FROM GEOMETRY: ORTHOGONAL REP.

Orthogonal Sketches

GOAL: Define "small" records to be assigned to bags

Orthogonal Sketches

GOAL: Define "small" records to be assigned to bags

ABSTRACT AWAY FROM GEOMETRY: ORTHOGONAL REP.

FOCUS ON ACTIVE VERTICES (BAG)

ABSTRACT AWAY FROM INACTIVE VERTICES:
ORTHOGONAL SKETCHES*

* Orthogonal sketches also contain dummy vertices/edges to preserve connectivity

Orthogonal Sketches

Lemma: There are $k^{O(k)}(\sigma+b)^{k}$ distinct orthogonal sketches.

* Orthogonal sketches also contain dummy vertices/edges to preserve connectivity

Orthogonal Sketches

Lemma: There are $k^{O(k)}(\sigma+b)^{k}$ distinct orthogonal sketches.

- $k^{O(k)}$ possible embeddings on $O(k)$ vertices

Orthogonal Sketches

Lemma: There are $k^{O(k)}(\sigma+b)^{k}$ distinct orthogonal sketches.

- $k^{O(k)}$ possible embeddings on $O(k)$ vertices
- For each embedding we count:
* Possible vertex-face angle assignments are $2^{O(k)}$

Orthogonal Sketches

Lemma: There are $k^{O(k)}(\sigma+b)^{k}$ distinct orthogonal sketches.

- $k^{O(k)}$ possible embeddings on $O(k)$ vertices
- For each embedding we count:
* Possible vertex-face angle assignments are $2^{O(k)}$
* Possible roll-up number assignments are $(\sigma+b)^{k}$

Orthogonal Sketches

Lemma: There are $k^{O(k)}(\sigma+b)^{k}$ distinct orthogonal sketches.

- $k^{O(k)}$ possible embeddings on $O(k)$ vertices
- For each embedding we count:
* Possible vertex-face angle assignments are $2^{O(k)}$
* Possible roll-up number assignments are $(\sigma+b)^{k}$

$$
|\rho(u, v)| \leq \sigma+b+4
$$

ROLL-UP how much a facial path rolls up depends on the number of NUMBER bends and degree- 2 vertices in the face

Orthogonal Sketches

Lemma: There are $k^{O(k)}(\sigma+b)^{k}$ distinct orthogonal sketches.

- $k^{O(k)}$ possible embeddings on $O(k)$ vertices
- For each embedding we count:
* Possible vertex-face angle assignments are $2^{O(k)}$
* Possible roll-up number assignments are $(\sigma+b)^{k}$ $|\rho(u, v)| \leq \sigma+b+4$
ROLL-UP how much a facial path rolls up depends on the number of NUMBER bends and degree- 2 vertices in the face Roll-up numbers are not independent of each another, choosing k of them along a spanning tree fixes all the others

Introduce Operation

INPUT: a set S of orthogonal sketches of a bag X and a vertex \bullet

Introduce Operation

INPUT: a set S of orthogonal sketches of a bag X and a vertex \bullet for each orthogonal sketch $o \in S$: identify faces where ocan be placed;

Introduce Operation

INPUT: a set S of orthogonal sketches of a bag X and a vertex \bullet for each orthogonal sketch $o \in S$: identify faces where o can be placed; foreach planar embedding: generate all roll-up number assignments for the new edges; keep only the shapes that are valid;

Forget Operation

INPUT: a set S of orthogonal sketches of a bag X and a vertex Update each orthogonal sketch $o \in S$

Join Operation

INPUT: 2 sets of orthogonal sketches to be merged at a bag X
More complex procedure to ensure efficiency.

Open Problems \& Future Work

Open Problems \& Future Work

1. FPT algorithm for OrthogonalPlanarity parametrized by treewidth and number of bends?
2. Subcubic time complexity for series-parallel graphs?
3. UpwardPlanarity and WindrosePlanarity admit similar combinatorial characterizations based on vertex-angles.

Our approach can be extended to prove that these problems can be solved in polynomial time on graphs of bounded treewidth.

