4-Connected Triangulations on Few Lines

GD 2019
September 20., 2019
Průhonice/Prague

Stefan Felsner (TUB, Berlin)

Line Cover Number

$\pi(G)=\min (\ell: \exists$ plane drawing of G with vertices covered by ℓ lines $)$

Classes with $\pi(G)=2$:

- trees
- outerplanar
- grids

Lower bound

Theorem [Eppstein, SoCG 19]. \exists planar, bipartite, cubic, 3-connected graphs G_{n} with $\pi\left(G_{n}\right) \in \Omega\left(n^{1 / 3}\right)$.

Lower bound

Corollary. \exists planar 4-connected graphs G_{n} with $\pi\left(G_{n}\right) \in \Omega\left(n^{1 / 3}\right)$.

Our contribution

Theorem. For all G planar 4-connected $\pi(G) \leq \sqrt{2 n}$.

Tools:

- planar lattices
- orthogonal partitions of posets
- transversal structures

Posets \& Lattices

3 diagrams.

- a planar poset of dimension 3
- a non-planar lattice
- a planar lattice.

Theorem.
A finite lattice is planar if and only if its dimension is ≤ 2.

A planar lattice and its conjugate

Chains, antichains, width, and height

Canonical chain and antichain partitions

Planar lattices on h lines

Proposition. A planar lattice of height h has a diagram with points on h horizontal lines.

\qquad
\qquad
\qquad
\qquad
\qquad

Planar lattices on h lines

Proposition. A planar lattice of height h has a diagram with points on h horizontal lines.

Planar lattices on h lines

Proposition. A planar lattice of height h has a diagram with points on h horizontal lines.

Planar lattices on h lines

Proposition. A planar lattice of height h has a diagram with points on h horizontal lines.

Planar lattices on h lines

Proposition. A planar lattice of height h has a diagram with points on h horizontal lines.

Planar lattices on h lines

Proposition. A planar lattice of height h has a diagram with points on h horizontal lines.

Greene-Kleitman theory

With a poset P with n elements there is a partition λ of n, such that for the Ferrer's diagram $G(P)$ of λ we have:

- The number of squares in the ℓ longest columns of $G(P)$ equals the maximal number of elements covered by an ℓ-chain.
- The number of squares in the k longest rows of $G(P)$ equals the maximal number of elements covered by a k-antichain.

maximal 2-chain

maximal 3-antichain

Orthogonal pairs

A chain family \mathcal{C} and an antichain family \mathcal{A} are orthogonal iff

1. $P=\left(\bigcup_{A \in \mathcal{A}} A\right) \cup\left(\bigcup_{C \in \mathcal{C}} C\right)$, and
2. $|A \cap C|=1 \quad$ for all $A \in \mathcal{A}, C \in \mathcal{C}$.

Theorem [Frank '80]. If (ℓ, k) is a corner of $G(P)$, then there is an orthogonal pair consisting of a ℓ-chain \mathcal{C} and a k-antichain \mathcal{A}.

Orthogonal pairs

Theorem [Frank '80]. If (ℓ, k) is on the boundary of $G(P)$, then there is an orthogonal pair consisting of a ℓ-chain \mathcal{C} and a k-antichain \mathcal{A}.

Corollary. A poset with n elements has (ℓ, k) an orthogonal pair consisting of a ℓ-chain \mathcal{C} and a k-antichain with $k+\ell \leq \sqrt{2 n}-1$.

Planar lattices on $\leq \sqrt{2 n}-1$ lines

Proposition. A planar lattice with n elements has a diagram with points on k horizontal lines and ℓ vertical lines where $k+\ell \leq \sqrt{2 n}-1$.

Adjusting chains and antichains

Lemma. \mathcal{C}, \mathcal{A} an orthogonal pair of P

- \mathcal{C}^{\prime} the canonical chain partition of $P_{\mathcal{C}}$
- \mathcal{A}^{\prime} the canonical antichain partition of $P_{\mathcal{A}}$
$\Longrightarrow \mathcal{C}^{\prime}, \mathcal{A}^{\prime}$ is an orthogonal pair of P.

Canonical chain cover

Lemma. $\left(C_{1}, \ldots, C_{\ell}\right)$ the canonical chain partition of $P_{\mathcal{C}} \Longrightarrow$ there are extensions C_{i}^{+}of C_{i} such that

- C_{i}^{+}is a maximal chain of $P_{\mathcal{C}}$
- $C_{i}^{+} \subseteq \bigcup_{j \leq i} C_{j}$

Phase i

In phase i we add all elements between C_{i-1}^{+}and C_{i}^{+}including C_{i}^{+}

- add right ears to C_{i-1}^{+}
- draw C_{i} and add left ears to C_{i}
- add the connecting edges, chains, components

Phase i

In phase i we add all elements between C_{i-1}^{+}and C_{i}^{+}including C_{i}^{+}

- add right ears to C_{i-1}^{+}

Phase i

In phase i we add all elements between C_{i-1}^{+}and C_{i}^{+}including C_{i}^{+}

- add right ears to C_{i-1}^{+}

Phase i

In phase i we add all elements between C_{i-1}^{+}and C_{i}^{+}including C_{i}^{+}

- add right ears to C_{i-1}^{+}

Phase i

In phase i we add all elements between C_{i-1}^{+}and C_{i}^{+}including C_{i}^{+}

- add right ears to C_{i-1}^{+}

Phase i

In phase i we add all elements between C_{i-1}^{+}and C_{i}^{+}including C_{i}^{+}

- add right ears to C_{i-1}^{+}

Phase i

In phase i we add all elements between C_{i-1}^{+}and C_{i}^{+}including C_{i}^{+}

- add right ears to C_{i-1}^{+}

Phase i

In phase i we add all elements between C_{i-1}^{+}and C_{i}^{+}including C_{i}^{+}

- add right ears to C_{i-1}^{+}
- draw C_{i} and add left ears to C_{i}

Phase i

In phase i we add all elements between C_{i-1}^{+}and C_{i}^{+}including C_{i}^{+}

- add right ears to C_{i-1}^{+}
- draw C_{i} and add left ears to C_{i}

Phase i

In phase i we add all elements between C_{i-1}^{+}and C_{i}^{+}including C_{i}^{+}

- add right ears to C_{i-1}^{+}
- draw C_{i} and add left ears to C_{i}
- add the connecting edges, chains, components

Transversal structures

Proposition. 4-connected inner triangulations of a quadrangle admit transversal structures (a.k.a. regular edge labeling).

Transversal structures and planar lattices

Proposition. The red graph of a transversal structure is the diagram of a planar lattice.

4-connected planar

Proposition. The blue edges can be included while drawing the red lattice.

4-connected planar

1 extra line for the missing edge.

Thank you

