4-Connected Triangulations on Few Lines

GD 2019

September 20., 2019 Průhonice/Prague

Stefan Felsner (TUB, Berlin)

Line Cover Number

 $\pi(G) = \min \left(\ell : \exists plane drawing of G with vertices covered by \ell lines \right)$

Classes with $\pi(G) = 2$:

- trees
- outerplanar
- grids

Lower bound

Theorem [Eppstein, SoCG 19]. \exists planar, bipartite, cubic, 3-connected graphs G_n with $\pi(G_n) \in \Omega(n^{1/3})$.

Lower bound

Corollary. \exists planar 4-connected graphs G_n with $\pi(G_n) \in \Omega(n^{1/3})$.

Theorem. For all *G* planar 4-connected $\pi(G) \leq \sqrt{2n}$.

Tools:

- planar lattices
- orthogonal partitions of posets
- transversal structures

Posets & Lattices

3 diagrams.

- a planar poset of dimension 3
- a non-planar lattice
- a planar lattice.

Theorem.

A finite lattice is planar if and only if its dimension is ≤ 2 .

A planar lattice and its conjugate

Chains, antichains, width, and height

Canonical chain and antichain partitions

Greene-Kleitman theory

With a poset *P* with *n* elements there is a partition λ of *n*, such that for the Ferrer's diagram G(P) of λ we have:

- The number of squares in the ℓ longest columns of G(P) equals the maximal number of elements covered by an ℓ-chain.
- The number of squares in the k longest rows of G(P) equals the maximal number of elements covered by a k-antichain.

Orthogonal pairs

A chain family C and an antichain family A are orthogonal iff 1. $P = \left(\bigcup_{A \in A} A\right) \cup \left(\bigcup_{C \in C} C\right)$, and 2. $|A \cap C| = 1$ for all $A \in A$, $C \in C$.

Theorem [Frank '80]. If (ℓ, k) is a corner of G(P), then there is an orthogonal pair consisting of a ℓ -chain C and a k-antichain A.

Orthogonal pairs

Theorem [Frank '80]. If (ℓ, k) is on the boundary of G(P), then there is an orthogonal pair consisting of a ℓ -chain C and a k-antichain A.

Corollary. A poset with *n* elements has (ℓ, k) an orthogonal pair consisting of a ℓ -chain C and a *k*-antichain with $k + \ell \le \sqrt{2n} - 1$.

Planar lattices on $\leq \sqrt{2n} - 1$ lines

Proposition. A planar lattice with *n* elements has a diagram with points on *k* horizontal lines and ℓ vertical lines where $k + \ell \leq \sqrt{2n} - 1$.

Adjusting chains and antichains

Lemma. C, A an orthogonal pair of P

- \mathcal{C}' the canonical chain partition of $P_{\mathcal{C}}$
- \mathcal{A}' the canonical antichain partition of $\mathcal{P}_{\mathcal{A}}$

 $\implies \mathcal{C}', \mathcal{A}'$ is an orthogonal pair of P.

Canonical chain cover

Lemma. (C_1, \ldots, C_ℓ) the canonical chain partition of $P_C \implies$ there are extensions C_i^+ of C_i such that

- C_i^+ is a maximal chain of P_C
- $C_i^+ \subseteq \bigcup_{j \leq i} C_j$

- add right ears to C_{i-1}^+
- draw C_i and add left ears to C_i
- add the connecting edges, chains, components

In phase *i* we add all elements between C_{i-1}^+ and C_i^+ including C_i^+

In phase *i* we add all elements between C_{i-1}^+ and C_i^+ including C_i^+

In phase *i* we add all elements between C_{i-1}^+ and C_i^+ including C_i^+

In phase *i* we add all elements between C_{i-1}^+ and C_i^+ including C_i^+

In phase *i* we add all elements between C_{i-1}^+ and C_i^+ including C_i^+

In phase *i* we add all elements between C_{i-1}^+ and C_i^+ including C_i^+

- add right ears to C_{i-1}^+
- draw C_i and add left ears to C_i

- add right ears to C_{i-1}^+
- draw C_i and add left ears to C_i

- add right ears to C_{i-1}^+
- draw C_i and add left ears to C_i
- add the connecting edges, chains, components

Proposition. 4-connected inner triangulations of a quadrangle admit transversal structures (a.k.a. regular edge labeling).

Transversal structures and planar lattices

Proposition. The red graph of a transversal structure is the diagram of a planar lattice.

Proposition. The blue edges can be included while drawing the red lattice.

4-connected planar

 $1\ \text{extra}$ line for the missing edge.

Thank you