

Chair for **INFORMATICS I** Efficient Algorithms and Knowledge-Based Systems

Line & Plane Cover Numbers Revisited

Therese BiedlStefan FelsnerHenk MeijerAlexander WolffU WaterlooTU BerlinRooseveldt CU Würzburg

[Chaplick, Fleszar, Lipp, Ravsky, Verbitsky, W. GD'16]

Given: graph G

[Chaplick, Fleszar, Lipp, Ravsky, Verbitsky, W. GD'16]

Given: graph G

[Chaplick, Fleszar, Lipp, Ravsky, Verbitsky, W. GD'16]

Given: graph G

[Chaplick, Fleszar, Lipp, Ravsky, Verbitsky, W. GD'16]

Given: graph G

[Chaplick, Fleszar, Lipp, Ravsky, Verbitsky, W. GD'16]

Given: graph G

[Chaplick, Fleszar, Lipp, Ravsky, Verbitsky, W. GD'16]

Given: graph G

Given: graph G

Given: graph G

Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_5 ?

Given: graph G

Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_5 ?

0

Given: graph G

Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_5 ?

Given: graph G

Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_5 ?

Given: graph G

Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_5 ?

3 planes.

Given: graph G

Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_5 ?

3 planes.

Given: graph G

Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_5 ?

3 planes.

Given: graph G

Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_5 ?

3 planes.

Given: graph G

Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_5 ?

3 planes.

Given: graph G

Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_5 ?

3 planes.

... and for K_6 ? 4 planes.

Given: graph G

[Chaplick, Fleszar, Lipp, Ravsky, Verbitsky, W. WADS'17]

	weak	strong
line cover number in 2	D ?	$\exists \mathbb{R} ext{-complete}$
in 3	D NP-comple	ete $\exists \mathbb{R}$ -complete
plane cover number in 3	D NP-comple	ete NP-hard

[Chaplick, Fleszar, Lipp, Ravsky, Verbitsky, W. WADS'17]

		weak	strong	
line cover number	in 2D	?	$\exists \mathbb{R} ext{-complete}$	
	in 3D	NP-complete	$\exists \mathbb{R} ext{-complete}$	
plane cover number	in 3D	NP-complete	NP-hard	
For those variants, over testing for cover number 2 is hard				

For these variants, even testing for cover number 2 is hard!

[Chaplick, Fleszar, Lipp, Ravsky, Verbitsky, W. WADS'17]

		weak	strong	
line cover number	in 2D	?	$\exists \mathbb{R} ext{-complete}$	
	in 3D	NP-complete	$\exists \mathbb{R} ext{-complete}$	
plane cover number	r in 3D	NP-complete	NP-hard	
For these variants, even testing for cover number 2 is hard!				

 \Rightarrow No FPT-algorithm for these cover numbers :-(

[Chaplick, Fleszar, Lipp, Ravsky, Verbitsky, W. WADS'17]

		weak	strong	
line cover number	in 2D	?	$\exists \mathbb{R}\text{-complete}$	
	in 3D	NP-complete	$\exists \mathbb{R} ext{-complete}$	
plane cover number	r in 3D	NP-complete	NP-hard	
For these variants, even testing for cover number 2 is hard! \Rightarrow No FPT-algorithm for these cover numbers :-(
For these variants, we do have FPT-algorithms.				

Previous Work II [Firmann, Ravsky, W. EuroCG'18]

Constructed an infinite family of planar graphs such that...

Previous Work II [Firmann, Ravsky, W. EuroCG'18]

Constructed an infinite family of planar graphs such that...

[Firman, Straube, W. Poster @ GD'18]

- SAT- and ILP-tests for weak line cover number 2 in 2D.
- Conjecture:

Every cubic planar graph has weak line cover nmb. \leq 2 in 2D.

[Firman, Straube, W. Poster @ GD'18]

- SAT- and ILP-tests for weak line cover number 2 in 2D.
- Conjecture:

Every cubic planar graph has weak line cover nmb. \leq 2 in 2D.

[Eppstein SoCG'19] No!

[Firman, Straube, W. Poster @ GD'18]

- SAT- and ILP-tests for weak line cover number 2 in 2D.
- Conjecture:

Every cubic planar graph has weak line cover nmb. \leq 2 in 2D.

[Eppstein SoCG'19] No! – Simple counterexample:

[Firman, Straube, W. Poster @ GD'18]

- SAT- and ILP-tests for weak line cover number 2 in 2D.
- Conjecture:

Every cubic planar graph has weak line cover nmb. \leq 2 in 2D.

[Eppstein SoCG'19] No!

 $\forall \ell \exists$ planar cubic graph G_{ℓ} with $O(\ell^3)$ vertices that cannot be drawn on ℓ lines.

[Firman, Straube, W. Poster @ GD'18]

- SAT- and ILP-tests for weak line cover number 2 in 2D.
- Conjecture:

Every cubic planar graph has weak line cover nmb. \leq 2 in 2D.

 $\forall \ell \exists$ subcubic series-parallel G'_{ℓ} and apex-tree G''_{ℓ} that cannot be drawn on ℓ lines.

[Firman, Straube, W. Poster @ GD'18]

- SAT- and ILP-tests for weak line cover number 2 in 2D.
- Conjecture:

Every cubic planar graph has weak line cover nmb. \leq 2 in 2D.

• It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines.

 It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d + 1 \in \Theta(\log n)$.

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d + 1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2:
- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d + 1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2:

At most 5n - 19

edges (if $n \ge 7$).

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d + 1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2:

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d + 1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2:

At most 5n - 19

edges (if $n \ge 7$).

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d + 1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2:

 $\begin{array}{c|c} & & & & \\ & &$

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d + 1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2:

At most 5n - 19edges (if $n \ge 7$).

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d + 1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2:

At most 5n - 19edges (if $n \ge 7$).

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d + 1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2:

At most 5n - 19edges (if $n \ge 7$).

G' ensures that edges of G cannot be drawn *on* levels.

 ℓ_{i+1}

 ℓ_i

Reduction from LevelPlanarity

Reduction from LEVELPLANARITY

- It is NP-hard to test whether a given graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d + 1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2: At most 5n 19 if $n \ge 7$.

- It is NP-hard to test whether a given graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d + 1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2: At most 5n 19 if $n \ge 7$.

Let G be drawn on a red and a blue plane.

Let G be drawn on a red and a blue plane.

Let R be the subgraph of G in the red plane.

Let G be drawn on a red and a blue plane.

Let *R* be the subgraph of *G* in the red plane. (B - blue plane.)

Let *G* be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (*B* – blue plane.) Let s = |spine vtc|, r = |red vtc|, b = |blue vtc|

Let *G* be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (*B* – blue plane.) Let $s = |\text{spine vtc}|, r = |\text{red vtc}|, b = |\text{blue vtc}| \implies s+r+b = n$.

Let *G* be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (B - blue plane.) Let $s = |spine vtc|, r = |red vtc|, b = |blue vtc| \Rightarrow s+r+b = n$. W.I.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine

Let *G* be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (*B* – blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.l.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$.

Let *G* be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (*B* – blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.l.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \le s \le n - 4$.

Let *G* be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (*B* - blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.l.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \le s \le n - 4$. Let t = |spine edges|.

Let *G* be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (*B* – blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.l.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \le s \le n - 4$. Let t = |spine edges|.

 $\Rightarrow m_G \leq m_R + m_B - t$

Let *G* be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (*B* – blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.l.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \le s \le n - 4$. Let t = |spine edges|.

 $\Rightarrow m_G \le m_R + m_B - t \le 3(s+r) - 6 + 3(s+b) - 6 - t$

Let G be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (B - blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.I.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \leq s \leq n-4$. Let t = |spine edges|. $\Rightarrow m_G \leq m_R + m_B - t \leq 3(s+r) - 6 + 3(s+b) - 6 - t$ $\leq 4n - 16 + \underbrace{(2s - t)}_{\leq n - 3}$ Remains to show:

Let G be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (B - blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.I.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \leq s \leq n-4$. Let t = |spine edges|. $\Rightarrow m_G \leq m_R + m_B - t \leq 3(s+r) - 6 + 3(s+b) - 6 - t$ $\leq 4n - 16 + \underbrace{(2s - t)}_{\leq n - 3} \leq 5n - 19$ Remains to show:

Let G be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (B - blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.I.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \leq s \leq n-4$. Let t = |spine edges|. $\Rightarrow m_G \leq m_R + m_B - t \leq 3(s+r) - 6 + 3(s+b) - 6 - t$ $\leq 4n - 16 + (2s - t) \leq 5n - 19$ Remains to show: $\leq n - 3$

Consider subgraph of *R* induced by edges that cross the spine:

Let G be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (*B* – blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.I.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \leq s \leq n-4$. Let t = |spine edges|. $\Rightarrow m_G \leq m_R + m_B - t \leq 3(s+r) - 6 + 3(s+b) - 6 - t$ $\leq 4n - 16 + \underbrace{(2s - t)}_{\leq n - 3} \leq 5n - 19$ Remains to show: $\sum_{\leq n - 3} m_{\times} := |\dots|$ Consider subgraph of R induced by edges that cross the spine:

Let G be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (B - blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.I.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \leq s \leq n-4$. Let t = |spine edges|. $\Rightarrow m_G \leq m_R + m_B - t \leq 3(s+r) - 6 + 3(s+b) - 6 - t$ $\leq 4n - 16 + \underbrace{(2s - t)}_{\leq n - 3} \leq 5n - 19$ Remains to show: $\underbrace{(2s - t)}_{\leq n - 3} \leq 5n - 19$ Consider subgraph of R induced by edges that cross the spine: $\leq m_{\times} \leq$

Let G be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (*B* – blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.I.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \leq s \leq n-4$. Let t = |spine edges|. $\Rightarrow m_G \leq m_R + m_B - t \leq 3(s+r) - 6 + 3(s+b) - 6 - t$ $\leq 4n - 16 + \underbrace{(2s - t)}_{\leq n - 3} \leq 5n - 19$ Remains to show: $\underbrace{(2s - t)}_{\leq n - 3} \leq 5n - 19$ Consider subgraph of R induced by edges that cross the spine: $|gaps| \stackrel{(\star)}{=} s - t \leq \frac{m_{\times}}{m_{\times}} \leq$

(*) counting the unbounded spine pieces as *one* gap

Let G be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (*B* – blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.I.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \leq s \leq n-4$. Let t = |spine edges|. $\Rightarrow m_G \le m_R + m_B - t \le 3(s+r) - 6 + 3(s+b) - 6 - t$ $\leq 4n - 16 + (2s - t) \leq 5n - 19$ Remains to show: $\leq n-3$ $m_{\times} := | \dots$ Consider subgraph of R induced by edges that cross the spine: $|gaps| \stackrel{(\star)}{=} s - t \leq \frac{m_{\times}}{s} \leq 2r - 4$

Let G be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (*B* – blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.I.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \leq s \leq n-4$. Let t = |spine edges|. $\Rightarrow m_G \le m_R + m_B - t \le 3(s+r) - 6 + 3(s+b) - 6 - t$ $\leq 4n - 16 + (2s - t) \leq 5n - 19$ Remains to show: $\leq n-3$ $m_{\times} := | \dots$ Consider subgraph of R induced by edges that cross the spine: $|gaps| \stackrel{(\star)}{=} s - t \leq m_{\times} \stackrel{(\star\star)}{\leq} 2r - \not 4 3$

Let G be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (*B* – blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.I.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \leq s \leq n-4$. Let t = |spine edges|. $\Rightarrow m_G \leq m_R + m_B - t \leq 3(s+r) - 6 + 3(s+b) - 6 - t$ $\leq 4n - 16 + (2s - t) \leq 5n - 19$ Remains to show: $\leq n-3$ $m_{\times} := | \dots$ Consider subgraph of R induced by edges that cross the spine: $|gaps| \stackrel{(\star)}{=} s - t \leq m_{\times} \leq 2r - 43$ $\Rightarrow 2s - t <$

Let G be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (*B* – blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.I.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \leq s \leq n-4$. Let t = |spine edges|. $\Rightarrow m_G \leq m_R + m_B - t \leq 3(s+r) - 6 + 3(s+b) - 6 - t$ $\leq 4n - 16 + (2s - t) \leq 5n - 19$ Remains to show: $\leq n-3$ $m_{\times} := | \dots$ Consider subgraph of R induced by edges that cross the spine: $|gaps| \stackrel{(\star)}{=} s - t \leq m_{\times} \leq 2r - 43$ \Rightarrow 2s - t \leq s + (2r - 3) - t

Let G be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (*B* – blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow s + r + b = n$. W.I.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \leq s \leq n-4$. Let t = |spine edges|. $\Rightarrow m_G \leq m_R + m_B - t \leq 3(s+r) - 6 + 3(s+b) - 6 - t$ $\leq 4n - 16 + (2s - t) \leq 5n - 19$ Remains to show: $\leq n-3$ $m_{\times} := | \dots$ Consider subgraph of R induced by edges that cross the spine: $|gaps| \stackrel{(\star)}{=} s - t \leq \frac{m_{\times}}{2} \leq 2r - 43$ \Rightarrow 2s - t \leq s + (2r - 3) - t < s + r + b - 3

 (\star) counting the unbounded spine pieces as *one* gap $(\star\star)$ This subgraph is bipartit

 $(\star\star)$ This subgraph is bipartite, but for r = 2 there's 1 edge.

Let G be drawn on a red and a blue plane. Let *R* be the subgraph of *G* in the red plane. (*B* – blue plane.) Let s = |spine vtc|, r = |red vtc|, $b = |\text{blue vtc}| \Rightarrow \frac{s+r+b}{s+r+b} = n$. W.I.o.g. $b \ge r$, $s \ge 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \ge 2$. $\Rightarrow 1 \leq s \leq n-4$. Let t = |spine edges|. $\Rightarrow m_G \leq m_R + m_B - t \leq 3(s+r) - 6 + 3(s+b) - 6 - t$ $\leq 4n - 16 + (2s - t) < 5n - 19$ Remains to show: $\leq n-3$ $m_{\times} := | \dots$ Consider subgraph of R induced by edges that cross the spine: $|gaps| \stackrel{(\star)}{=} s - t \leq m_{\times} \stackrel{(\star\star)}{\leq} 2r - \cancel{4}3$ $\Rightarrow 2s - t \leq s + (2r - 3) - t$ < s + r + b - 3 = n - 3 (\star) counting the unbounded spine pieces as *one* gap $(\star\star)$ This subgraph is bipartite, but for r = 2 there's 1 edge.

- It is NP-hard to test whether a given graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d + 1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2: At most 5n 19 if $n \ge 7$.

- It is NP-hard to test whether a given graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d + 1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2: At most 5n 19 if $n \ge 7$.

- It is NP-hard to test whether a given graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d + 1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2: At most 5n 19 if $n \ge 7$.
- Open Problems

Open: Weak Line Cover Number

• Deciding whether the weak line cover number is 2 is in NP.

Open: Weak Line Cover Number

- Deciding whether the weak line cover number is 2 is in NP.
- Is deciding whether the weak line cover number is k in NP?

Open: Strong Line Covers for Binary Trees

• $O(n \log \log n)$ area

- $O(n \log \log n)$ area
- constant aspect ratio

- $O(n \log \log n)$ area
- constant aspect ratio
- # lines = $O(\sqrt{n \log \log n})$

- $O(n \log \log n)$ area
- constant aspect ratio
- # lines = $O(\sqrt{n \log \log n})$
- slight improvement by Chan [GD'17/SoCG'18]

- $O(n \log \log n)$ area
- constant aspect ratio
- # lines = $O(\sqrt{n \log \log n})$
- slight improvement by Chan [GD'17/SoCG'18]

Do $O(\sqrt{n})$ lines suffice – if they can be arbitrary?