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For these variants, we do have FP T-algorithms.



Previous Work |1 [Firmann, Ravsky, W. EuroCG'18]

Constructed an infinite family of planar graphs such that. ..

base graph next graph
E— —
and so on. ..
maximum degree treewidth 2D weak line

cover number

§ 3 unbounded



Previous Work |1 [Firmann, Ravsky, W. EuroCG'18]

Constructed an infinite family of planar graphs such that. ..

base graph next graph
E— —
and so on. ..
maximum degree treewidth 2D weak line

cover number

§ 3 unbounded
5?7 what about ... 27



Previous Work 1|

[Firman, Straube, W. Poster @ GD'18]

e SAT- and ILP-tests for weak line cover number 2 in 2D.

e Conjecture:
Every cubic planar graph has weak line cover nmb. < 2 in 2D.



Previous Work 1|

[Firman, Straube, W. Poster @ GD'18]

e SAT- and ILP-tests for weak line cover number 2 in 2D.

e Conjecture:
Every cubic planar graph has weak line cover nmb. < 2 in 2D.

[Eppstein SoCG'19] No!



Previous Work 1|

[Firman, Straube, W. Poster @ GD'18]

e SAT- and ILP-tests for weak line cover number 2 in 2D.

e Conjecture:
Every cubic planar graph has weak line cover nmb. < 2 in 2D.

|[Eppstein SoCG'19] No! —




Previous Work 1|

[Firman, Straube, W. Poster @ GD'18]

e SAT- and ILP-tests for weak line cover number 2 in 2D.

e Conjecture:
Every cubic planar graph has weak line cover nmb. < 2 in 2D.

S —

[Eppstein SoCG'19] No!

V¢ 3 planar cubic graph G, with
O(¢3) vertices that cannot be
drawn on £ lines.




Previous Work 1|

[Firman, Straube, W. Poster @ GD'18]

e SAT- and ILP-tests for weak line cover number 2 in 2D.
e Conjecture:

Every cubic planar graph has weak line cover nmb. < 2 in 2D.

[Eppstein SoCG'19] No!
72 3 planar cubic graph G, ,}'m't,

O(¢3) vertices that cannot
drawn on ¢ lines.

V¢ 3 subcubic series-parallel G,

and apex-tree G,’ that cannot
be drawn on £ lines.



Previous Work 1|

[Firman, Straube, W. Poster @ GD'18]

e SAT- and ILP-tests for weak line cover number 2 in 2D.
e Conjecture:

Every cubic planar graph has weak line cover nmb. < 2 in 2D.

[Eppstein SoCG'19] Nol
V¢ 3 planar cubic graph Gy ’“ﬁ'ﬁ e

O(¢3) vertices that cannot
drawn on ¢ lines.

V¢ 3 subcubic series-parallel G,

and apex-tree G,’ that cannot
be drawn on £ lines.




Our Results



Our Results

e It is NP-hard to test whether a given planar graph G
can be weakly covered by 2 lines.



Our Results

e It is NP-hard to test whether a given planar graph G
can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)




Our Results

e It is NP-hard to test whether a given planar graph G

can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)

e [he weak line cover number of the universal stacked
triangulation of depth dis d +1 < O(logn).



Our Results

e It is NP-hard to test whether a given planar graph G
can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)

e [he weak line cover number of the universal stacked
triangulation of depth dis d +1 < O(logn).

e Tight bound for the number of edges in a graph with
strong plane number 2:



Our Results

e It is NP-hard to test whether a given planar graph G
can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)

e [he weak line cover number of the universal stacked
triangulation of depth dis d +1 < O(logn).

e Tight bound for the number of edges in a graph with
strong plane number 2:

At most bn — 19
edges (if n > 7).



Our Results

e It is NP-hard to test whether a given planar graph G
can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)

e [he weak line cover number of the universal stacked
triangulation of depth dis d +1 < O(logn).

e Tight bound for the number of edges in a graph with
strong plane number 2:

At most bn — 19
edges (if n > 7).



Our Results

e It is NP-hard to test whether a given planar graph G
can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)

e [he weak line cover number of the universal stacked
triangulation of depth dis d +1 < O(logn).

e Tight bound for the number of edges in a graph with
strong plane number 2:

At most bn — 19
edges (if n > 7).



Our Results

e It is NP-hard to test whether a given planar graph G
can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)

e [he weak line cover number of the universal stacked
triangulation of depth dis d +1 < O(logn).

e Tight bound for the number of edges in a graph with
strong plane number 2:

At most bn — 19
edges (if n > 7).



Our Results

e It is NP-hard to test whether a given planar graph G
can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)

e [he weak line cover number of the universal stacked
triangulation of depth dis d +1 < O(logn).

e Tight bound for the number of edges in a graph with
strong plane number 2:

At most bn — 19
edges (if n > 7).



Our Results

e It is NP-hard to test whether a given planar graph G
can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)

e [he weak line cover number of the universal stacked
triangulation of depth dis d +1 < O(logn).

e Tight bound for the number of edges in a graph with
strong plane number 2:

At most bn — 19
edges (if n > 7).



Our Results

e It is NP-hard to test whether a given planar graph G

can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)

e [he weak line cover number of the universal stacked
triangulation of depth dis d +1 < O(logn).

e Tight bound for the number of edges in a graph with
strong plane number 2:

At most bn — 19
edges (if n > 7).



| EVELPLANARITY

A graph G = (V, E) is leveled-planar

if V' can be partitioned into Vi, V5, ...

such that every edge connects vertices in consecutive sets and
G has a planar s-I drawing with V; - R x {i} for i =1,2,...




| EVELPLANARITY

A graph G = (V, E) is leveled-planar

if V' can be partitioned into Vi, V5, ...

such that every edge connects vertices in consecutive sets and
G has a planar s-I drawing with V; - R x {i} for i =1,2,...




| EVELPLANARITY

A graph G = (V, E) is leveled-planar

if V' can be partitioned into Vi, V5, ...

such that every edge connects vertices in consecutive sets and
G has a planar s-I drawing with V; - R x {i} for i =1,2,...




| EVELPLANARITY

A graph G = (V, E) is leveled-planar

if V' can be partitioned into Vi, V5, ...

such that every edge connects vertices in consecutive sets and
G has a planar s-I drawing with V; - R x {i} for i =1,2,...




| EVELPLANARITY

A graph G = (V, E) is leveled-planar

if V' can be partitioned into Vi, V5, ...

such that every edge connects vertices in consecutive sets and
G has a planar s-I drawing with V; - R x {i} for i =1,2,...




| EVELPLANARITY

A graph G = (V, E) is leveled-planar

if V' can be partitioned into Vi, V5, ...

such that every edge connects vertices in consecutive sets and
G has a planar s-I drawing with V; - R x {i} for i =1,2,...




| EVELPLANARITY

A graph G = (V, E) is leveled-planar

if V' can be partitioned into Vi, V5, ...

such that every edge connects vertices in consecutive sets and
G has a planar s-I drawing with V; - R x {i} for i =1,2,...




| EVELPLANARITY

A graph G = (V, E) is leveled-planar

if V' can be partitioned into Vi, V5, ...

such that every edge connects vertices in consecutive sets and
G has a planar s-I drawing with V; - R x {i} for i =1,2,...




| EVELPLANARITY

A graph G = (V, E) is leveled-planar

if V' can be partitioned into Vi, V5, ...

such that every edge connects vertices in consecutive sets and
G has a planar s-I drawing with V; - R x {i} for i =1,2,...

leveled-planar m— weakly 2-line drawable




| EVELPLANARITY

A graph G = (V, E) is leveled-planar

if V' can be partitioned into Vi, V5, ...

such that every edge connects vertices in consecutive sets and
G has a planar s-I drawing with V; - R x {i} for i =1,2,...

leveled-planar m— weakly 2-line drawable




| EVELPLANARITY

A graph G = (V, E) is leveled-planar

if V' can be partitioned into Vi, V5, ...

such that every edge connects vertices in consecutive sets and
G has a planar s-I drawing with V; - R x {i} for i =1,2,...

leveled-planar m— weakly 2-line drawable




Transformation

Vi



Transformation




Transformation




Transformation




Transformation




Transformation




Transformation




Transformation




Transformation




Transformation

G’ ensures that
edges of G cannot
be drawn on levels.




Reduction from _LEVELPLANARITY




Reduction from LEVELPLANARITY



















Reduction from LEVELPLANARITY

.

G" = Gg + Sk + Py + G’ is weakly 2-line drawable. < G is leveled-planar.
A\ 4



Reduction from _LEVELPLANARITY

Theorem.

Testing whether
G has weak line

cover number 2
Is NP-hard.

G" = Gg + Sk + Py + G’ is weakly 2-line drawable. < G is leveled-planar.
A\ 4
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(x) counting the unbounded spine pieces as one gap (% %) This subgraph is bipartite, but for r = 2 there's 1 edge.
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et G be drawn on a red and a blue plane.

_et R be the subgraph of G in the red plane. (B — blue plane.)

, r=1|red vtc|, b=|blue vtc| = s+r+b=n.
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<4n—-16+(2s—t) <5n—19

Remains to show: < n—3 My = | e |

Consider subgraph of R induced by edges that cross the spine:
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=25 —t<s+(2r—3)—t Me—o—
<s+r+b—-—3=n—-3

(x) counting the unbounded spine pieces as one gap (% %) This subgraph is bipartite, but for r = 2 there's 1 edge.
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Our Results
e It is NP-hard to test whether a given graph G can be
weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)

e [he weak line cover number of the universal stacked
triangulation of depth dis d +1 < O(logn).

e Tight bound for the number of edges in a graph with
strong plane number 2: At most bn—19if n > 7.
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Open: Strong Line Covers for Binary Trees

<>

O(nloglog n) area
constant aspect ratio
# lines = O(y/nlog log n)

slight improvement
by Chan [GD'17/SoCG’18]

Do O(4/n) lines suffice —
If they can be arbitrary?
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