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A graph G = (V , E ) is leveled-planar
if V can be partitioned into V1, V2, . . .
such that every edge connects vertices in consecutive sets and
G has a planar s-l drawing with Vi → R× {i} for i = 1, 2, . . .
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leveled-planar weakly 2-line drawable⇒
e.g., K4:
⇐
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Testing whether
G has weak line
cover number 2
is NP-hard.

`1

`2

`3

Theorem.
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• Tight bound for the number of edges in a graph with
strong plane number 2: At most 5n − 19 if n ≥ 7.
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Open: Strong Line Covers for Binary Trees

• O(n log log n) area

• constant aspect ratio

• # lines = O(
√

n log log n)

Do O(
√

n) lines suffice –
if they can be arbitrary?

• slight improvement
by Chan [GD’17/SoCG’18]
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