Line \& Plane Cover Numbers Revisited

Therese Biedl Stefan Felsner Henk Meijer Alexander Wolff U Waterloo TU Berlin Rooseveldt C

U Würzburg

Weak Line Cover Numbers

Given: graph G

Weak Line Cover Numbers

Given: graph G
Find: crossing-free straight-line drawing of G such that all its vertices are covered by as few lines as possible.

Weak Line Cover Numbers

Given: graph G
Find: crossing-free straight-line drawing of G such that all its vertices are covered by as few lines as possible.

Weak Line Cover Numbers

Given: graph G
Find: crossing-free straight-line drawing of G such that all its vertices are covered by as few lines as possible.

Weak Line Cover Numbers

Given: graph G
Find: crossing-free straight-line drawing of G such that all its vertices are covered by as few lines as possible.

Weak Line Cover Numbers

Given: graph G
Find: crossing-free straight-line drawing of G such that all its vertices are covered by as few lines as possible.

Strong Plane Cover Number $\begin{aligned} & {[\text { CChaplick, Fleszar, Lipp }} \\ & \text { Ravsky, Verbitisky, } \\ & \text { W. GD } \\ & \text { GD } \\ & \text { '16] }\end{aligned}$

Given: graph G
Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

Strong Plane Cover Number $\begin{aligned} & \text { [Chaplick, Fleszar, Lipp } \\ & \text { Ravsk, Verbititsk, } \\ & \text { W. GD } \\ & \text {. } 16]\end{aligned}$

Given: graph G
Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_{5} ?

Strong Plane Cover Number $\begin{aligned} & \text { [Chaplick, Fleszar, Lipp, } \\ & \text { Ravsky, Verbitsky, W. GD'16] }\end{aligned}$

Given: graph G
Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_{5} ?

Strong Plane Cover Number $\begin{aligned} & \text { [Chaplick, Fleszar, Lipp, } \\ & \text { Ravsky, Verbitsky, W. GD'16] }\end{aligned}$

Given: graph G
Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_{5} ?

Strong Plane Cover Number $\begin{aligned} & \text { [Chaplick, Fleszar, Lipp, } \\ & \text { Ravsky, Verbitsky, W. GD'16] }\end{aligned}$

Given: graph G
Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_{5} ?

Strong Plane Cover Number $\begin{aligned} & \text { [Chaplick, Fleszar, Lipp, } \\ & \text { Ravsky, Verbitsky, W. GD'16] }\end{aligned}$

Given: graph G
Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_{5} ?

3 planes.

Strong Plane Cover Number $\begin{aligned} & \text { [Chaplick, Fleszar, Lipp, } \\ & \text { Ravsky, Verbitsky, W. GD'16] }\end{aligned}$

Given: graph G
Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_{5} ?

3 planes.

Strong Plane Cover Number $\begin{aligned} & \text { [Chaplick, Fleszar, Lipp, } \\ & \text { Ravsky, Verbitsky, W. GD'16] }\end{aligned}$

Given: graph G
Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_{5} ?

3 planes.

Strong Plane Cover Number $\begin{aligned} & \text { [Chaplick, Fleszar, Lipp, } \\ & \text { Ravsky, Verbitsky, W. GD'16] }\end{aligned}$

Given: graph G
Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_{5} ?

3 planes.

Strong Plane Cover Number $\begin{aligned} & \text { [Chaplick, Fleszar, Lipp, } \\ & \text { Ravsky, Verbitsky, W. GD'16] }\end{aligned}$

Given: graph G
Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_{5} ?

3 planes.

Strong Plane Cover Number $\begin{aligned} & \text { [Chaplick, Fleszar, Lipp, } \\ & \text { Ravsky, Verbitsky, W. GD'16] }\end{aligned}$

Given: graph G
Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_{5} ?

3 planes.

... and for K_{6} ?
4 planes.

Strong Plane Cover Number [Chapicick, Flesara, Lipp. Ravsky, Verbitsky, W. GD'16]

Given: graph G
Find: crossing-free straight-line drawing of G in 3D such that all its edges are covered by as few planes as possible.

How many planes do you need for K_{5} ?

Previous Work

line cover number in 2D
in 3D NP-complete $\exists \mathbb{R}$-complete
plane cover number in 3D
NP-complete

NP-hard

Previous Work

[Chaplick, Fleszar, Lipp, Ravsky, Verbitsky, W. WADS'17]
weak strong

line cover numberin 2D ?		$\exists \mathbb{R}$-complete
	in 3D	NP-complete
	$\exists \mathbb{R}$-complete	
plane cover number in 3D	NP-complete	NP-hard

For these variants, even testing for cover number 2 is hard!

Previous Work

[Chaplick, Fleszar, Lipp, Ravsky, Verbitsky, W. WADS'17]
weak strong
line cover number in 2D ? $\exists \mathbb{R}$-complete

	in 3D	NP-complete
plane cover number in 3D	NP-complete	
	NP-complete	NP-hard

For these variants, even testing for cover number 2 is hard!
\Rightarrow No FPT-algorithm for these cover numbers :-(

Previous Work

[Chaplick, Fleszar, Lipp, Ravsky, Verbitsky, W. WADS'17]
weak
line cover number

NP-complete
strong
$\exists \mathbb{R}$-complete
$\exists \mathbb{R}$-complete

For these variants, even testing for cover number 2 is hard!
\Rightarrow No FPT-algorithm for these cover numbers :-(
For these variants, we do have FPT-algorithms.

Previous Work II

Constructed an infinite family of planar graphs such that...

maximum degree

2D weak line cover number
unbounded

Previous Work II

Constructed an infinite family of planar graphs such that...

maximum degree
6
5? what about ... 2?
treewidth
3

2D weak line cover number
unbounded

Previous Work III

[Firman, Straube, W. Poster © GD'18]

- SAT- and ILP-tests for weak line cover number 2 in 2D.
- Conjecture:

Every cubic planar graph has weak line cover nmb. ≤ 2 in 2D.

Previous Work III

[Firman, Straube, W. Poster © GD'18]

- SAT- and ILP-tests for weak line cover number 2 in 2D.
- Conjecture:

Every cubic planar graph has weak line cover nmb. ≤ 2 in 2D.
[Eppstein SoCG'19] No!

Previous Work III

[Firman, Straube, W. Poster © GD'18]

- SAT- and ILP-tests for weak line cover number 2 in 2D.
- Conjecture:

Every cubic planar graph has weak line cover nmb. ≤ 2 in 2D.
[Eppstein SoCG'19] No! - Simple counterexample:

Previous Work III

[Firman, Straube, W. Poster © GD'18]

- SAT- and ILP-tests for weak line cover number 2 in 2D.
- Conjecture:

Every cubic planar graph has weak line cover nmb. ≤ 2 in 2 D.
[Eppstein SoCG'19] No!
$\forall \ell \exists$ planar cubic graph G_{ℓ} with $O\left(\ell^{3}\right)$ vertices that cannot be drawn on ℓ lines.

Previous Work III

[Firman, Straube, W. Poster © GD'18]

- SAT- and ILP-tests for weak line cover number 2 in 2D.
- Conjecture:

Every cubic planar graph has weak line cover nmb. ≤ 2 in 2D.
[Eppstein SoCG'19] No!
$\forall \ell \exists$ planar cubic graph G_{ℓ} $O\left(\ell^{3}\right)$ vertices that cannot drawn on ℓ lines.

$\forall \ell \exists$ subcubic series-parallel G_{ℓ}^{\prime} and apex-tree $G_{\ell}^{\prime \prime}$ that cannot be drawn on ℓ lines.

Previous Work III

[Firman, Straube, W. Poster © GD'18]

- SAT- and ILP-tests for weak line cover number 2 in 2D.
- Conjecture:

Every cubic planar graph has weak line cover nmb. ≤ 2 in 2D.
[Eppstein SoCG'19] No!
$\forall \ell \exists$ planar cubic graph G_{ℓ} $O\left(\ell^{3}\right)$ vertices that cannot drawn on ℓ lines.
$\forall \ell \exists$ subcubic series-parallel G_{ℓ}^{\prime} and apex-tree $G_{\ell}^{\prime \prime}$ that cannot be drawn on ℓ lines.

Our Results

Our Results

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines.

Our Results

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)

Our Results

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d+1 \in \Theta(\log n)$.

Our Results

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d+1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2 :

Our Results

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d+1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2 :

Our Results

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d+1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2 :

Our Results

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d+1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2 :

Our Results

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d+1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2 :

Our Results

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d+1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2 :

Our Results

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d+1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2 :

Our Results

- It is NP-hard to test whether a given planar graph G can be weakly covered by 2 lines. (Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d+1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2 :

LevelPlanarity

A graph $G=(V, E)$ is leveled-planar
if V can be partitioned into V_{1}, V_{2}, \ldots
such that every edge connects vertices in consecutive sets and G has a planar s-l drawing with $V_{i} \rightarrow \mathbb{R} \times\{i\}$ for $i=1,2, \ldots$

LevelPlanarity

A graph $G=(V, E)$ is leveled-planar
if V can be partitioned into V_{1}, V_{2}, \ldots
such that every edge connects vertices in consecutive sets and G has a planar s-I drawing with $V_{i} \rightarrow \mathbb{R} \times\{i\}$ for $i=1,2, \ldots$

LevelPlanarity

A graph $G=(V, E)$ is leveled-planar
if V can be partitioned into V_{1}, V_{2}, \ldots
such that every edge connects vertices in consecutive sets and G has a planar s-I drawing with $V_{i} \rightarrow \mathbb{R} \times\{i\}$ for $i=1,2, \ldots$

LevelPlanarity

A graph $G=(V, E)$ is leveled-planar
if V can be partitioned into V_{1}, V_{2}, \ldots
such that every edge connects vertices in consecutive sets and G has a planar s-l drawing with $V_{i} \rightarrow \mathbb{R} \times\{i\}$ for $i=1,2, \ldots$

LevelPlanarity

A graph $G=(V, E)$ is leveled-planar
if V can be partitioned into V_{1}, V_{2}, \ldots
such that every edge connects vertices in consecutive sets and G has a planar s-l drawing with $V_{i} \rightarrow \mathbb{R} \times\{i\}$ for $i=1,2, \ldots$

LevelPlanarity

A graph $G=(V, E)$ is leveled-planar
if V can be partitioned into V_{1}, V_{2}, \ldots
such that every edge connects vertices in consecutive sets and G has a planar s-l drawing with $V_{i} \rightarrow \mathbb{R} \times\{i\}$ for $i=1,2, \ldots$

LevelPlanarity

A graph $G=(V, E)$ is leveled-planar
if V can be partitioned into V_{1}, V_{2}, \ldots
such that every edge connects vertices in consecutive sets and G has a planar s-l drawing with $V_{i} \rightarrow \mathbb{R} \times\{i\}$ for $i=1,2, \ldots$

LevelPlanarity

A graph $G=(V, E)$ is leveled-planar
if V can be partitioned into V_{1}, V_{2}, \ldots
such that every edge connects vertices in consecutive sets and G has a planar s-l drawing with $V_{i} \rightarrow \mathbb{R} \times\{i\}$ for $i=1,2, \ldots$

LevelPlanarity

A graph $G=(V, E)$ is leveled-planar
if V can be partitioned into V_{1}, V_{2}, \ldots
such that every edge connects vertices in consecutive sets and G has a planar s-l drawing with $V_{i} \rightarrow \mathbb{R} \times\{i\}$ for $i=1,2, \ldots$

$\Rightarrow \quad$ weakly 2 -line drawable

[Chaplick et al., Bannister et al., GD 2016]

LevelPlanarity

A graph $G=(V, E)$ is leveled-planar
if V can be partitioned into V_{1}, V_{2}, \ldots
such that every edge connects vertices in consecutive sets and G has a planar s-l drawing with $V_{i} \rightarrow \mathbb{R} \times\{i\}$ for $i=1,2, \ldots$

[Chaplick et al., Bannister et al., GD 2016]

LevelPlanarity

A graph $G=(V, E)$ is leveled-planar
if V can be partitioned into V_{1}, V_{2}, \ldots
such that every edge connects vertices in consecutive sets and G has a planar s-l drawing with $V_{i} \rightarrow \mathbb{R} \times\{i\}$ for $i=1,2, \ldots$

Transformation

Reduction from LevelPlanarity

Reduction from LevelPlanarity

Our Results

- It is NP-hard to test whether a given graph G can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d+1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2 : At most $5 n-19$ if $n \geq 7$.

Our Results

- It is NP-hard to test whether a given graph G can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d+1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2 : At most $5 n-19$ if $n \geq 7$.
G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$
Let G be drawn on a red and a blue plane.

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane.

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vtc $|, r=|$ red vtc $|, b=|$ blue vtc \mid

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vtc $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \Rightarrow s+r+b=n$.

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vtc $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \Rightarrow s+r+b=n$.
W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vtc $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$. W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vtc $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$. W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$.

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vtc $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$. W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vtc $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \Rightarrow s+r+b=n$. W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t$

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vtc $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$. W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t \leq 3(s+r)-6+3(s+b)-6-t$

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vac $|, r=|$ red vic $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$. W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t \leq 3(s+r)-6+3(s+b)-6-t$

$$
\leq 4 n-16+(2 s-t)
$$

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vtc $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \Rightarrow s+r+b=n$. W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t \leq 3(s+r)-6+3(s+b)-6-t$

$$
\leq 4 n-16+(2 s-t)
$$

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vtc $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$.
W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t \leq 3(s+r)-6+3(s+b)-6-t$ $\leq 4 n-16+\underbrace{(2 s-t)}$
Remains to show: $\leq n-3$

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vtc $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$.
W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t \leq 3(s+r)-6+3(s+b)-6-t$ $\quad \leq 4 n-16+\underbrace{(2 s-t)}_{\text {Remains to show: }} \leq 5 n-19$

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vtc $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$.
W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t \leq 3(s+r)-6+3(s+b)-6-t$ $\leq 4 n-16+\underbrace{(2 s-t)}_{\leq n-3} \leq 5 n-19$
Consider subgraph of R induced by edges that cross the spine:

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vac $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$.
W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t \leq 3(s+r)-6+3(s+b)-6-t$ $\leq 4 n-16+\underbrace{(2 s-t)} \leq 5 n-19$
Remains to show: \square

$$
m_{\times}:=|\ldots|
$$

Consider subgraph of R induced by $\overbrace{\text { edges that cross the spine: }}$

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vac $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$.
W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t \leq 3(s+r)-6+3(s+b)-6-t$ $\leq 4 n-16+\underbrace{(2 s-t)} \leq 5 n-19$
Remains to show: \square

$$
m_{\times}:=|\ldots|
$$

Consider subgraph of R induced by edges that cross the spine:

$$
\leq m_{\times} \leq
$$

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vac $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$. W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t \leq 3(s+r)-6+3(s+b)-6-t$

$$
\leq 4 n-16+\underbrace{(2 s-t)} \leq 5 n-19
$$

Remains to show:

$$
m_{\times}:=|\ldots|
$$

Consider subgraph of R induced by edges that cross the spine: \mid gaps $\mid \stackrel{(4)}{=} s-t \leq m_{\times} \leq$

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vac $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$. W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t \leq 3(s+r)-6+3(s+b)-6-t$

$$
\leq 4 n-16+\underbrace{(2 s-t)} \leq 5 n-19
$$

Remains to show:

$$
\begin{aligned}
& \leq n-3 \\
& \text { of } R \text { induced } \\
& \times \stackrel{(*+)}{ } \leq 2 r-4
\end{aligned}
$$

$$
m_{\times}:=|\ldots|
$$

Consider subgraph of R induced by edges that cross the spine: \mid gaps $\mid \stackrel{(\star)}{=} s-t \leq m_{x} \stackrel{(\star \pm)}{\leq} 2 r-4$

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vac $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$. W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t \leq 3(s+r)-6+3(s+b)-6-t$

$$
\leq 4 n-16+\underbrace{(2 s-t)} \leq 5 n-19
$$

Remains to show:

$$
\begin{aligned}
& \underbrace{\leq n-3} \\
& \text { of } R \text { induced } \\
& \times \stackrel{(++x)}{\leq} 2 r-43
\end{aligned}
$$

$$
m_{\times}:=|\ldots|
$$

Consider subgraph of R induced by edges that cross the spine: \mid gaps $\mid \stackrel{(\star)}{=} s-t \leq m_{x} \stackrel{(*+)}{\leq} 2 r-43$

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vac $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$. W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t \leq 3(s+r)-6+3(s+b)-6-t$

$$
\leq 4 n-16+\underbrace{(2 s-t)} \leq 5 n-19
$$

Remains to show:
$\leq n-3$
of R induced
$\times \leq 2 r-43$
$\Rightarrow 2 s-t \leq$

(\star) counting the unbounded spine pieces as one gap $\quad(\star \star)$ This subgraph is bipartite, but for $r=2$ there's 1 edge.

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vac $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$. W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t \leq 3(s+r)-6+3(s+b)-6-t$ $\leq 4 n-16+\underbrace{(2 s-t)} \leq 5 n-19$
Remains to show: \square

$$
m_{\times}:=|\ldots|
$$

Consider subgraph of R induced by $\overbrace{\text { edges that cross the spine: }}$

$$
\begin{aligned}
& \mid \text { gaps } \mid \stackrel{(t)}{=} s-t \leq m_{\times} \stackrel{(t)}{\leq} 2 r-\neq 3 \\
& \Rightarrow 2 s-t \leq s+(2 r-3)-t
\end{aligned}
$$

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vac $|, r=|$ red vtc $|, b=|\mathrm{blue} \mathrm{vtc}| \quad \Rightarrow s+r+b=n$. W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t \leq 3(s+r)-6+3(s+b)-6-t$ $\leq 4 n-16+\underbrace{(2 s-t)} \leq 5 n-19$
Remains to show:

$$
n-3
$$

$$
m_{\times}:=|\ldots|
$$

Consider subgraph of R induced by $\overbrace{\text { edges that cross the spine: }}$

$$
\begin{gathered}
\mid \text { gaps } \mid \stackrel{(t)}{=} s-t \leq m_{\times} \stackrel{(\times t)}{\leq} 2 r-\neq 3 \\
\Rightarrow 2 s-t \leq s+(2 r-3)-t \\
\leq s+r+b-3
\end{gathered}
$$

(\star) counting the unbounded spine pieces as one gap $\quad(\star \star)$ This subgraph is bipartite, but for $r=2$ there's 1 edge.

G drawable on 2 planes $\Rightarrow m_{G} \leq 5 n-19$

Let G be drawn on a red and a blue plane.
Let R be the subgraph of G in the red plane. (B - blue plane.)
Let $s=\mid$ spine vic $|, r=|$ red vic $|, b=|b l u e ~ v t c| ~ \Rightarrow s+r+b=n$. W.I.o.g. $b \geq r, s \geq 1$, and ≥ 1 red edge crosses spine $\Rightarrow r \geq 2$.
$\Rightarrow 1 \leq s \leq n-4$. Let $t=\mid$ spine edges \mid.
$\Rightarrow m_{G} \leq m_{R}+m_{B}-t \leq 3(s+r)-6+3(s+b)-6-t$ $\leq 4 n-16+\underbrace{(2 s-t)} \leq 5 n-19$
Remains to show:

$\leq n-3$ $f R$ induced $\times \leq 2 r-43$

$\Rightarrow 2 s-t \leq s+(2 r-3)-t$

$$
\leq s+r+b-3=n-3 \square
$$

[^0]
Our Results

- It is NP-hard to test whether a given graph G can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d+1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2 : At most $5 n-19$ if $n \geq 7$.

Our Results

- It is NP-hard to test whether a given graph G can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d+1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2: At most $5 n-19$ if $n \geq 7$.

Our Results

- It is NP-hard to test whether a given graph G can be weakly covered by 2 lines.
(Hence, weak line cover number is not in FPT.)
- The weak line cover number of the universal stacked triangulation of depth d is $d+1 \in \Theta(\log n)$.
- Tight bound for the number of edges in a graph with strong plane number 2: At most $5 n-19$ if $n \geq 7$.
- Open Problems

Open: Weak Line Cover Number

- Deciding whether the weak line cover number is 2 is in NP.

Open: Weak Line Cover Number

- Deciding whether the weak line cover number is 2 is in NP.
- Is deciding whether the weak line cover number is k in NP?

Open: Strong Line Covers for Binary Trees

- $O(n \log \log n)$ area

Open: Strong Line Covers for Binary Trees

- $O(n \log \log n)$ area
- constant aspect ratio

Open: Strong Line Covers for Binary Trees

- $O(n \log \log n)$ area
- constant aspect ratio
- $\#$ lines $=O(\sqrt{n \log \log n})$

Open: Strong Line Covers for Binary Trees

- $O(n \log \log n)$ area
- constant aspect ratio
- $\#$ lines $=O(\sqrt{n \log \log n})$
- slight improvement
by Chan [GD'17/SoCG'18]

Open: Strong Line Covers for Binary Trees

- $O(n \log \log n)$ area
- constant aspect ratio
- $\#$ lines $=O(\sqrt{n \log \log n})$
- slight improvement by Chan [GD'17/SoCG'18]

Do $O(\sqrt{n})$ lines suffice if they can be arbitrary?

[^0]: (*) counting the unbounded spine pieces as one gap
 $(\star \star)$ This subgraph is bipartite, but for $r=2$ there's 1 edge.

