UN!IVERSITÄT WÜRZBURG

Drawing Planar Graphs with Few Segments on the Grid

Philipp Kindermann Universität Würzburg

joint work with
Thomas Schneck Antonios Symvonis

NATIONALE METSOBILE TECHNOLOGIE

Visual Complexity

\# of geometric entities in a drawing

Visual Complexity

\# of geometric entities in a drawing

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

segment number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

segment number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

segment number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

segment number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

segment number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

segment number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

segment number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

segment number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

arc number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

arc number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

arc number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

arc number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

arc number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

segment number

arc number
5

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

segment number

arc number
5

path cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

segment number

arc number
5

path cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

segment number

arc number
5

path cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

segment number

arc number
5

path cover number

Visual Complexity

\# of geometric entities in a drawing

(strong) line cover number

segment number

arc number
5

path cover number
4

Visual Complexity

\# of geometric entities in a drawing
(strong) line cover number

segment number

arc number
5

slope number
2

path cover number
4

Visual Complexity

\# of geometric entities in a drawing
(strong) line cover number

segment number

arc number
5

slope number
2

path cover number
4

Visual Complexity

\# of geometric entities in a drawing
(strong) line cover number

segment number

all other numbers are lower bounds

5

slope number
2

path cover number
4

(Some) Known Results

(Some) Known Results

[1] Dujmović et al. 2007

(Some) Known Results

[1] Dujmović et al. 2007

(Some) Known Results

Class	Segments			
	Lower	Upper		
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$	$[1]$
outerplanar				
max. outerp.	n	$[1]$		
n	$[1]$	n	$[1]$	

[1] Dujmović et al. 2007

(Some) Known Results

Class	Segments		
	Lower	Upper	
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$
outerplanar	n	$[1]$	
max. outerp.	n	$[1]$	n
3-trees			

[1] Dujmović et al. 2007

(Some) Known Results

Class	Segments		
	Lower	Upper	
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$
Outerplanar	n	$[1]$	
max. outerp.	n	$[1]$	n
3-trees	$2 n$	$[1]$	$2 n$
2-connected	$2 n$	$[1]$	

[1] Dujmović et al. 2007

(Some) Known Results

Class	Segments		
	Lower	Upper	
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$
outerplanar	n	$[1]$	
max. outerp.	n	$[1]$	n
3-trees	$2 n$	$[1]$	$2 n$
2-connected	$2 n$	$[1]$	
3-connected	$2 n$	$[1]$	$5 n / 2$

[1] Dujmović et al. 2007

(Some) Known Results

Class	Segments		
	Lower	Upper	
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$
outerplanar	n	$[1]$	
max. outerp.	n	$[1]$	n
3-trees	$2 n$	$[1]$	$2 n$
2-connected	$2 n$	$[1]$	
3-connected	$2 n$	$[1]$	$5 n / 2$
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$

(Some) Known Results

Class	Segments		
	Lower	Upper	
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$
outerplanar	n	$[1]$	
max. outerp.	n	$[1]$	n
3-trees	$2 n$	$[1]$	$2 n$
2-connected	$2 n$	$[1]$	
3-connected	$2 n$	$[1]$	$5 n / 2$
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$
triangulation	$2 n$	$[4]$	$7 n / 3$

(Some) Known Results

Class	Segments		
	Lower	Upper	
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$
outerplanar	n	$[1]$	
max. outerp.	n	$[1]$	n
3-trees	$2 n$	$[1]$	$2 n$
2-connected	$2 n$	$[1]$	
3-connected	$2 n$	$[1]$	$5 n / 2$
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$
li]	$[2]$		
triangulation	$2 n$	$[4]$	$7 n / 3$
4-conn. triang.	$2 n$	$[4]$	$9 n / 3$

(Some) Known Results

Class	Segments	
	Lower	Upper
tree	$\vartheta / 2[1]$	$\vartheta / 2 \quad[1]$
outerplanar	n [1]	
max. outerp.	n [1]	$n \quad$ [1]
3-trees	$2 n \quad[1]$	$2 n \quad[1]$
2-connected	$2 n \quad[1]$	
3-connected	$2 n \quad[1]$	$5 n / 2 \quad$ [1]
cubic 3-conn.	$n / 2$ [3]	$n / 2$ [2]
triangulation	$2 n \quad[4]$	$7 n / 3$ [4]
4 -conn. triang.	$2 n \quad[4]$	$9 n / 3$ [4]
planar	$2 n \quad[4]$	$8 n / 3$ [4]

[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher \& Mondal 2014

(Some) Known Results

Class	Segments			Grid Segments		
	Lower	Upper	Segm.	Area		
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$	$[1]$		
outerplanar	n	$[1]$				
max. outerp.	n	$[1]$	n	$[1]$		
3-trees	$2 n$	$[1]$	$2 n$	$[1]$		
2-connected	$2 n$	$[1]$				
3-connected	$2 n$	$[1]$	$5 n / 2$	$[1]$		
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$	$[2]$		
triangulation	$2 n$	$[4]$	$7 n / 3$	$[4]$		
4-conn. triang.	$2 n$	$[4]$	$9 n / 3$	$[4]$		
planar	$2 n$	$[4]$	$8 n / 3$	$[4]$		

[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher \& Mondal 2014

(Some) Known Results

Class	Segments			Grid Segments		
	Lower	Upper	Segm.	Area		
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$	$[1]$		
outerplanar	n	$[1]$				
max. outerp.	n	$[1]$	n	$[1]$		
3-trees	$2 n$	$[1]$	$2 n$	$[1]$		
2-connected	$2 n$	$[1]$				
3-connected	$2 n$	$[1]$	$5 n / 2$	$[1]$		
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$	$[2]$	$n / 2$	$[2]$
triangulation	$2 n$	$[4]$	$7 n / 3$	$[4]$		$O(n) \times O(n)$
4-conn. triang.	$2 n$	$[4]$	$9 n / 3$	$[4]$		
planar	$2 n$	$[4]$	$8 n / 3$	$[4]$		

[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher \& Mondal 2014

(Some) Known Results

Class	Segments			Grid Segments		
	Lower	Upper	Segm.	Area		
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$	$[1]$		
outerplanar	n	$[1]$				
max. outerp.	n	$[1]$	n	$[1]$		
3-trees	$2 n$	$[1]$	$2 n$	$[1]$		
2-connected	$2 n$	$[1]$				
3-connected	$2 n$	$[1]$	$5 n / 2$	$[1]$		
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$	$[2]$	$n / 2$	$[2]$
triangulation	$2 n$	$[4]$	$7 n / 3$	$[4]$	$8 n / 3[5]$	$2(n) \times O(n)$
4-conn. triang.	$2 n$	$[4]$	$9 n / 3$	$[4]$		
planar	$2 n$	$[4]$	$8 n / 3$	$[4]$		

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015
[3] Mondal et al. 2013
[4] Durocher \& Mondal 2014 [5] Mondal 2016

(Some) Known Results

Class	Segments			Grid Segments		
	Lower	Upper	Segm.	Area		
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$	$[1]$	$3 n / 4[6]$	$O\left(n^{2}\right) \times O\left(n^{1.58}\right)$
outerplanar	n	$[1]$				
max. outerp.	n	$[1]$	n	$[1]$		
3-trees	$2 n$	$[1]$	$2 n$	$[1]$		
2-connected	$2 n$	$[1]$				
3-connected	$2 n$	$[1]$	$5 n / 2$	$[1]$		
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$	$[2]$	$n / 2$	$[2]$
triangulation	$2 n$	$[4]$	$7 n / 3$	$[4]$	$8 n / 3[5]$	$2(n) \times O(n)$
4-conn. triang.	$2 n$	$[4]$	$9 n / 3$	$[4]$		
planar	$2 n$	$[4]$	$8 n / 3$	$[4]$		

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher \& Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

(Some) Known Results

Class	Segments			Grid Segments		
	Lower	Upper	Segm.	Area		
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$	$[1]$	$3 n / 4[6]$	$O\left(n^{2}\right) \times O\left(n^{1.58}\right)$
outerplanar	n	$[1]$				
max. outerp.	n	$[1]$	n	$[1]$		
quasipolynomial						
3-trees	$2 n$	$[1]$	$2 n$	$[1]$		
2-connected	$2 n$	$[1]$				
3-connected	$2 n$	$[1]$	$5 n / 2$	$[1]$		
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$	$[2]$	$n / 2$	$[2]$
triangulation	$2 n$	$[4]$	$7 n / 3$	$[4]$	$8 n / 3[5]$	$20(n) \times O(n)$
4-conn. triang.	$2 n$	$[4]$	$9 n / 3$	$[4]$		
planar	$2 n$	$[4]$	$8 n / 3$	$[4]$		

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher \& Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

(Some) Known Results

Class	Segments			Grid Segments		
	Lower	Upper	Segm.	Area		
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$	$[1]$	$3 n / 4[6]$	$O\left(n^{2}\right) \times O\left(n^{1.58}\right)$
outerplanar	n	$[1]$				
max. outerp.	n	$[1]$	n	$[1]$	$3 n / 2[6]$	quasipolynomial
3-trees	$2 n$	$[1]$	$2 n$	$[1]$		
2-connected	$2 n$	$[1]$				
3-connected	$2 n$	$[1]$	$5 n / 2$	$[1]$		
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$	$[2]$	$n / 2$	$[2]$
triangulation	$2 n$	$[4]$	$7 n / 3$	$[4]$	$8 n / 3[5]$	$O(n) \times O(n)$
4-conn. triang.	$2 n$	$[4]$	$9 n / 3$	$[4]$		
planar	$2 n$	$[4]$	$8 n / 3$	$[4]$		

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher \& Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

(Some) Known Results

Class	Segments			Grid Segments			
	Lower	Upper	Segm.	Area			
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$	$[1]$	$3 n / 4$	$[6]$	$O\left(n^{2}\right) \times O\left(n^{1.58}\right)$
outerplanar	n	$[1]$					
max. outerp.	n	$[1]$	n	$[1]$	$3 n / 2[6]$	$O(n) \times O\left(n^{2}\right)$	
3-trees	$2 n$	$[1]$	$2 n$	$[1]$	$8 n / 3[6]$	$O(n) \times O\left(n^{2}\right)$	
2-connected	$2 n$	$[1]$					
3-connected	$2 n$	$[1]$	$5 n / 2$	$[1]$			
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$	$[2]$	$n / 2$	$[2]$	$O(n) \times O(n)$
triangulation	$2 n$	$[4]$	$7 n / 3$	$[4]$	$8 n / 3[5]$	$2{ }^{O}(n \log n)$	
4-conn. triang.	$2 n$	$[4]$	$9 n / 3$	$[4]$			
planar	$2 n$	$[4]$	$8 n / 3$	$[4]$			

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher \& Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

(Some) Known Results

Class	Segments			Grid Segments		
	Lower	Upper	Segm.	Area		
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$	$[1]$	$3 n / 4[6]$	$O\left(n^{2}\right) \times O\left(n^{1.58}\right)$
outerplanar	n	$[1]$				
max. outerp.	n	$[1]$	n	$[1]$	$3 n / 2[6]$	$O(n) \times O\left(n^{2}\right)$
3-trees	$2 n$	$[1]$	$2 n$	$[1]$	$8 n / 3[6]$	$O(n) \times O\left(n^{2}\right)$
2-connected	$2 n$	$[1]$				
3-connected	$2 n$	$[1]$	$5 n / 2$	$[1]$		
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$	$[2]$	$n / 2$	$[2]$
triangulation	$2 n$	$[4]$	$7 n / 3$	$[4]$	$8 n / 3[5]$	$O(n) \times O(n)$
4-conn. triang.	$2 n$	$[4]$	$9 n / 3$	$[4]$		
planar	$2 n$	$[4]$	$8 n / 3$	$[4]$		

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher \& Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

(Some) Known Results

Class	Segments			Grid Segments		
	Lower	Upper	Segm.	Area		
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$	$[1]$	$3 n / 4[6]$	$O\left(n^{2}\right) \times O\left(n^{1.58}\right)$
outerplanar	n	$[1]$				
max. outerp.	n	$[1]$	n	$[1]$	$3 n / 2[6]$	$O(n) \times O\left(n^{2}\right)$
3-trees	$2 n$	$[1]$	$2 n$	$[1]$	$8 n / 3[6]$	$O(n) \times O\left(n^{2}\right)$
2-connected	$2 n$	$[1]$				
3-connected	$2 n$	$[1]$	$5 n / 2$	$[1]$		
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$	$[2]$	$n / 2$	$[2]$
triangulation	$2 n$	$[4]$	$7 n / 3$	$[4]$	$8 n / 3[5]$	$2(n) \times O(n)$
4-conn. triang.	$2 n$	$[4]$	$9 n / 3$	$[4]$		
planar	$2 n$	$[4]$	$8 n / 3$	$[4]$		

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher \& Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

Tree Drawings

Tree T
n vtcs

Tree Drawings

Tree T
n vtcs

β deg-2 vtcs

Tree Drawings

Tree T
n vtcs

β deg-2 vtcs

Tree Drawings

Tree T
n vtcs

Remove β deg- 2 vtcs

Tree Drawings

Tree T
n vtcs

\Rightarrow Tree T^{\prime}
$n-\beta$ vtcs

Remove β deg- 2 vtcs

Tree Drawings

Tree T
n vtcs

Remove β deg- 2 vtcs
\Rightarrow Tree T^{\prime}
$n-\beta$ vtcs

α leaves

Tree Drawings

Tree T
n vtcs

Remove β deg- 2 vtcs
\Rightarrow Tree T^{\prime}
$n-\beta$ vtcs

α leaves

Tree Drawings

Tree T
n vtcs

Remove β deg- 2 vtcs
\Rightarrow Tree T^{\prime}
$n-\beta$ vtcs

α leaves

Tree Drawings

Tree T n vtcs

Remove β deg- 2 vtcs
\Rightarrow Tree T^{\prime}
$n-\beta$ vtcs

Remove α leaves

Tree Drawings

Tree T
n vtcs

Remove β deg- 2 vtcs
\Rightarrow Tree T^{\prime}
$n-\beta$ vtcs

\Rightarrow Tree $T^{\prime \prime}$
$n-\alpha-\beta$ vtcs

Tree Drawings

Tree T
n vtcs

Remove β deg- 2 vtcs
\Rightarrow Tree T^{\prime}
$n-\beta$ vtcs

\Rightarrow Tree $T^{\prime \prime}$
$n-\alpha-\beta$ vtcs

Remove α leaves

$n-\alpha-\beta$
segment

Tree Drawings

Tree T
n vtcs

Remove β deg- 2 vtcs
\Rightarrow Tree T^{\prime}
$n-\beta$ vtcs

\Rightarrow Tree $T^{\prime \prime}$
$n-\alpha-\beta$ vtcs

Remove α leaves
$+\alpha / 2$ segments

$n-\alpha-\beta$
segment

Tree Drawings

Tree T
n vtcs

Remove β deg- 2 vtcs
\Rightarrow Tree T^{\prime}
$n-\beta$ vtcs

\Rightarrow Tree $T^{\prime \prime}$
$n-\alpha-\beta$ vtcs

Remove α leaves
$+\alpha / 2$ segments

$n-\alpha / 2-\beta$
segments

$n-\alpha-\beta$
segment

Tree Drawings

Tree T
n vtcs

Remove β deg- 2 vtcs
+0 segments
\Rightarrow Tree T^{\prime}
$n-\beta$ vtcs

\Rightarrow Tree $T^{\prime \prime}$
$n-\alpha-\beta$ vtcs

Remove α leaves
$+\alpha / 2$ segments

$n-\alpha / 2-\beta$
segments

$n-\alpha-\beta$
segment

Tree Drawings

Tree T
n vtcs

Remove β deg- 2 vtcs
+0 segments

\Rightarrow Tree T^{\prime}
$n-\beta$ vtcs

$$
\Rightarrow \text { Tree } T^{\prime \prime}
$$

$$
n-\alpha-\beta \text { vtcs }
$$

Remove α leaves
$+\alpha / 2$ segments

Tree Drawings

Tree T
n vtcs

Remove β deg- 2 vtcs
+0 segments

\Rightarrow Tree T^{\prime}
$n-\beta$ vtcs

$$
\Rightarrow \text { Tree } T^{\prime \prime}
$$

$$
n-\alpha-\beta \text { vtcs }
$$

Remove α leaves
$+\alpha / 2$ segments

$n-\alpha-\beta$
segment

Tree Drawings

Tree T
n vtcs

Remove β deg- 2 vtcs
+0 segments

$$
\begin{aligned}
& \Rightarrow \text { Tree } T^{\prime} \\
& n-\beta \text { vtcs }
\end{aligned}
$$

\Rightarrow Tree $T^{\prime \prime}$
$n-\alpha-\beta$ vtcs

$$
\alpha>(n-\beta) / 2
$$

Remove α leaves
$+\alpha / 2$ segments

$n-\alpha-\beta$
segment

Tree Drawings

Tree T
n vtcs

Remove β deg- 2 vtcs
+0 segments

$$
\begin{aligned}
& \Rightarrow \text { Tree } T^{\prime} \\
& n-\beta \text { vtcs }
\end{aligned}
$$

\Rightarrow Tree $T^{\prime \prime}$
$n-\alpha-\beta$ vtcs

$$
\alpha>(n-\beta) / 2
$$

Remove α leaves
$+\alpha / 2$ segments

Tree Drawings

Tree Drawings

Tree Drawings

Tree Drawings

Tree Drawings

Tree Drawings

Tree Drawings

Tree Drawings
(1) Draw $\triangle \Delta \Delta \triangle$

Tree Drawings
(1) Draw $\triangle \Delta \Delta \triangle$

Tree Drawings
(1) Draw $\Delta \Delta \Delta \Delta$

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$

Tree Drawings

(1) Draw $\Delta \triangle \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$

Tree Drawings

(1) Draw $\Delta \triangle \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$

$$
v_{0}
$$

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$

Tree Drawings

(1) Draw $\Delta \Delta \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$

Tree Drawings

(1) Draw $\Delta \Delta \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$

Tree Drawings

(1) Draw $\Delta \Delta \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

Tree Drawings

(1) Draw $\Delta \Delta \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

Tree Drawings

(1) Draw $\Delta \Delta \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

Tree Drawings

(1) Draw $\Delta \Delta \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#

Tree Drawings

(1) Draw $\Delta \Delta \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square
(4) Sort • by \#

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order

Tree Drawings

(1) Draw $\Delta \Delta \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order

Tree Drawings

(1) Draw $\Delta \Delta \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order

Tree Drawings

(1) Draw $\Delta \Delta \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order

Tree Drawings

(1) Draw $\Delta \Delta \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order

Tree Drawings

(1) Draw $\Delta \Delta \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order
$3 n / 4$ segments

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order
$3 n / 4$ segments
$n \times n$ grid

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order
$3 n / 4$ segments
$n \times n$ grid

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order
$3 n / 4$ segments
$n \times n$ grid

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order
$3 n / 4$ segments
$n \times n$ grid

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order
$3 n / 4$ segments
$n \times n$ grid

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order
$3 n / 4$ segments
$n \times n$ grid

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order
$3 n / 4$ segments
$n \times n$ grid
height \checkmark

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order
$3 n / 4$ segments
$n \times n$ grid
height \checkmark
width

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order
$3 n / 4$ segments
$n \times n$ grid
height \checkmark
width

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order
$3 n / 4$ segments
$n \times n$ grid
height \checkmark
width

Tree Drawings

(1) Draw $\Delta \Delta \Delta \Delta$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order
$3 n / 4$ segments
$n \times n$ grid
height \checkmark
width

Tree Drawings

(1) Draw $\Delta \triangle \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order
$3 n / 4$ segments
$n \times n$ grid
height \checkmark
width

Tree Drawings

(1) Draw $\Delta \triangle \Delta \triangle$
(2) Layout $v+\Delta \Delta \Delta \Delta$
(3) Add \square

(4) Sort • by \#
(5) Place $\bullet+\square$ on common segments in order
$3 n / 4$ segments
$n \times n$ grid
height \checkmark
width \checkmark

Improved Results

Class		ents		Segments
	Lower	Upper	Segm.	Area
tre	9		3n/4 [6]	$O\left(n^{2}\right) \times O\left(n^{1.58}\right)$
tree	$v / 2[1]$	$\vartheta / 2$ [1]	$\vartheta / 2$ [6]	quasipolynomial
outerplanar	n [1]			
max. outerp.	$n \quad$ [1]	$n \quad$ [1]	$3 n / 2$ [6]	$O(n) \times O\left(n^{2}\right)$
3-trees	$2 n \quad[1]$	$2 n \quad$ [1]	$8 n / 3$ [6]	$O(n) \times O\left(n^{2}\right)$
2-connected	$2 n \quad[1]$			
3-connected	$2 n \quad[1]$	$5 n / 2$ [1]		
cubic 3-conn.	$n / 2$ [3]	$n / 2 \quad$ [2]	$n / 2$ [2]	$O(n) \times O(n)$
triangulation	$2 n \quad[4]$	7n/3 [4]	8n/3 [5]	$2^{O}(n \log n)$
4-conn. triang.	$2 n \quad[4]$	9n/3 [4]		
planar	$2 n \quad[4]$	$8 n / 3$ [4]		
[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013 [4] Durocher \& Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017				

Improved Results

Class	Seg	ments		Segments
	Lower	Upper	Segm.	Area
tree			$3 n / 4$	$n \times n$
tree	$v / 2[1]$	$\vartheta / 2$ [1]	$\vartheta / 2$ [6]	quasipolynomial
outerplanar	$n \quad[1]$			
max. outerp.	$n \quad[1]$	$n \quad$ [1]	$3 n / 2$ [6]	$O(n) \times O\left(n^{2}\right)$
3-trees	$2 n \quad[1]$	$2 n \quad$ [1]	$8 n / 3$ [6]	$O(n) \times O\left(n^{2}\right)$
2-connected	$2 n \quad[1]$			
3-connected	2 ll [1]	5n/2 [1]		
cubic 3-conn.	$n / 2$ [3]	$n / 2 \quad$ [2]	$n / 2$ [2]	$O(n) \times O(n)$
triangulation	$2 n \quad[4]$	$7 n / 3$ [4]	$8 n / 3$ [5]	$2^{O}(n \log n)$
4-conn. triang.	$2 n \quad[4]$	$9 n / 3$ [4]		
planar	$2 n \quad[4]$	$8 n / 3$ [4]		
[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013 [4] Durocher \& Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017				

Orderly Spanning Trees

[Chiang, Lin, Lu '05]

Orderly Spanning Trees

[Chiang, Lin, Lu '05]

neighbors of v in circ. order:

Orderly Spanning Trees

[Chiang, Lin, Lu '05]

neighbors of v in circ. order:
(1) parent

Orderly Spanning Trees

[Chiang, Lin, Lu '05]

neighbors of v in circ. order:
(1) parent
(2) $N^{+}(v)$: diff. subtree (left)

Orderly Spanning Trees

[Chiang, Lin, Lu '05]

neighbors of v in circ. order:
(1) parent
(2) $N^{+}(v)$: diff. subtree (left)

Orderly Spanning Trees

[Chiang, Lin, Lu '05]

neighbors of v in circ. order:
(1) parent
(2) $N^{+}(v)$: diff. subtree (left)

Orderly Spanning Trees

[Chiang, Lin, Lu '05]

neighbors of v in circ. order:
(1) parent
(2) $N^{+}(v)$: diff. subtree (left)
(3) children

Orderly Spanning Trees

[Chiang, Lin, Lu '05]

neighbors of v in circ. order:
(1) parent
(2) $N^{+}(v)$: diff. subtree (left)
(3) children
(4) $N^{-}(v)$: diff. subtree (right)

Orderly Spanning Trees

[Chiang, Lin, Lu '05]

neighbors of v in circ. order:
(1) parent
(2) $N^{+}(v)$: diff. subtree (left)
(3) children
(4) $N^{-}(v)$: diff. subtree (right)

Orderly Spanning Trees

[Chiang, Lin, Lu '05]

neighbors of v in circ. order:
(1) parent
(2) $N^{+}(v)$: diff. subtree (left)
(3) children
(4) $N^{-}(v)$: diff. subtree (right)

Slope-Disjoint Drawing of a Tree

[Angelini et al. '12]
Assign angle interval to each vtx

Slope-Disjoint Drawing of a Tree

[Angelini et al. '12]
Assign angle interval to each vtx

Slope-Disjoint Drawing of a Tree

[Angelini et al. '12]
Assign angle interval to each vtx All segments in $T[v]$ in interval

Slope-Disjoint Drawing of a Tree

 [Angelini et al. '12]Assign angle interval to each vtx All segments in $T[v]$ in interval

Slope-Disjoint Drawing of a Tree

[Angelini et al. '12]
Assign angle interval to each vtx All segments in $T[v]$ in interval

Slope-Disjoint Drawing of a Tree

 [Angelini et al. '12]Assign angle interval to each vtx All segments in $T[v]$ in interval Intervals of children: disjoint subintervals that contain parent edge

Slope-Disjoint Drawing of a Tree

 [Angelini et al. '12]Assign angle interval to each vtx All segments in $T[v]$ in interval Intervals of children: disjoint subintervals that contain parent edge

Slope-Disjoint Drawing of a Tree

 [Angelini et al. '12]Assign angle interval to each vtx All segments in $T[v]$ in interval Intervals of children: disjoint subintervals that contain parent edge

Slope-Disjoint Drawing of a Tree

 [Angelini et al. '12]Assign angle interval to each vtx All segments in $T[v]$ in interval Intervals of children: disjoint subintervals that contain parent edge

Slope-Disjoint Drawing of a Tree

Assign angle interval to each vtx All segments in $T[v]$ in interval Intervals of children: disjoint subintervals that contain parent edge

[Hossain \& Rahman '15]

Slope-disjoint drawing of orderly spanning tree on $O(n) \times O\left(n^{2}\right)$ grid \Rightarrow planar (monotone) drawing on $O(n) \times O\left(n^{2}\right)$ grid

Slope-Disjoint Drawing of a Tree

Assign angle interval to each vtx All segments in $T[v]$ in interval Intervals of children: disjoint subintervals that contain parent edge

[Hossain \& Rahman '15]

Slope-disjoint drawing of orderly spanning tree on $O(n) \times O\left(n^{2}\right)$ grid \Rightarrow planar (monotone) drawing on $O(n) \times O\left(n^{2}\right)$ grid

Obtaining a slope-disjoint drawing

Obtaining a slope-disjoint drawing

ccw pre-order traversal

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1
highest slope: n

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

highest slope: n

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1
highest slope: n

$\Rightarrow n \times n^{2}$ grid

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1
highest slope: n max. width: n

$\Rightarrow n \times n^{2}$ grid , 1 segment per leaf

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1
highest slope: n
 max. width: n

$\Rightarrow n \times n^{2}$ grid, 1 segment per leaf
[Miura, Azuma, Nishizeki '05]
Every Schnyder tree is an orderly spanning tree

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1
highest slope: n
 max. width: n

$\Rightarrow n \times n^{2}$ grid, 1 segment per leaf
[Miura, Azuma, Nishizeki '05]
Every Schnyder tree is an orderly spanning tree
T_{1}, T_{2}, T_{3} Schnyder realizer of 3-conn. planar graph $\Rightarrow \leq 2 n+1$ leaves in total in T_{1}, T_{2}, T_{3}

Obtaining a slope-disjoint drawing

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1
highest slope: n

max. width: n

$\Rightarrow n \times n^{2}$ grid, 1 segment per leaf

[Miura, Azuma, Nishizeki '05]

Every Schnyder tree is an orderly spanning tree
T_{1}, T_{2}, T_{3} Schnyder realizer of 3-conn. planar graph $\Rightarrow \leq 2 n+1$ leaves in total in T_{1}, T_{2}, T_{3}

3-conn. planar graph
$\Rightarrow(8 n-14) / 3$ segments, $O(n) \times O\left(n^{2}\right)$ grid

New Results

Class	Segments			Grid Segments		
	Lower	Upper	Segm.	Area		
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$	$[1]$	$3 n / 4$	$n \times n$
outerplanar	n	$[1]$				[6]
max. outerp.	n	$[1]$	n	$[1]$	$3 n / 2[6]$	$O(n) \times O\left(n^{2}\right)$
3-trees	$2 n$	$[1]$	$2 n$	$[1]$	$8 n / 3[6]$	$O(n) \times O\left(n^{2}\right)$
2-connected	$2 n$	$[1]$				
3-connected	$2 n$	$[1]$	$5 n / 2$	$[1]$		
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$	$[2]$	$n / 2$	$[2]$
triangulation	$2 n$	$[4]$	$7 n / 3$	$[4]$	$8 n / 3[5]$	$2 O(n) \times O(n)$
4-conn. triang.	$2 n$	$[4]$	$9 n / 3$	$[4]$		
planar	$2 n$	$[4]$	$8 n / 3$	$[4]$		

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher \& Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

New Results

Class	Segments			Grid Segments		
	Lower	Upper	Segm.	Area		
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$	$[1]$	$3 n / 4$	$n \times n$
outerplanar	n	$[1]$				[6]
max. outerp.	n	$[1]$	n	$[1]$	$3 n / 2[6]$	$O(n) \times O\left(n^{2}\right)$
3-trees	$2 n$	$[1]$	$2 n$	$[1]$	$8 n / 3[6]$	$O(n) \times O\left(n^{2}\right)$
2-connected	$2 n$	$[1]$				
3-connected	$2 n$	$[1]$	$5 n / 2$	$[1]$	$8 n / 3$	$O(n) \times O\left(n^{2}\right)$
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$	$[2]$	$n / 2$	$[2]$
triangulation	$2 n$	$[4]$	$7 n / 3$	$[4]$	$8 n / 3[5]$	$2 O(n \log n)$
4-conn. triang.	$2 n$	$[4]$	$9 n / 3$	$[4]$		
planar	$2 n$	$[4]$	$8 n / 3$	$[4]$		

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher \& Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

New Results

Class	Segments			Grid Segments		
	Lower	Upper	Segm.	Area		
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$	$[1]$	$3 n / 4$	$n \times n$
outerplanar	n	$[1]$			$7 n / 2$	$[6]$
max. outerp.	n	$[1]$	n	quasipolynomial	$O(n) \times O\left(n^{2}\right)$	
3-trees	$2 n$	$[1]$	$2 n$	$[1]$	$8 n / 2[6]$	$O(n) \times O\left(n^{2}\right)$
2-connected	$2 n$	$[1]$				
3-connected	$2 n$	$[1]$	$5 n / 2$	$[1]$	$8 n / 3$	$O(n) \times O\left(n^{2}\right)$
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$	$[2]$	$n / 2$	$[2]$
triangulation	$2 n$	$[4]$	$7 n / 3$	$[4]$	$8 n / 3[5]$	$O(n) \times O(n)$
4-conn. triang.	$2 n$	$[4]$	$9 n / 3$	$[4]$		
planar	$2 n$	$[4]$	$8 n / 3$	$[4]$		

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher \& Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

New Results

Class	Segments				Grid Segments		
	Lower	Upper	Segm.	Area			
tree	$\vartheta / 2$	$[1]$	$\vartheta / 2$	$[1]$	$3 n / 4$	$n \times n$	
outerplanar	n	$[1]$			$7 n / 4$	quasipolynomial	
max. outerp.	n	$[1]$	n	$[1]$	$3 n / 2[6]$	$O(n) \times O\left(n^{2}\right)$	
3-trees	$2 n$	$[1]$	$2 n$	$[1]$	$8 n / 3[6]$	$O(n) \times O\left(n^{2}\right)$	
2-connected	$2 n$	$[1]$					
3-connected	$2 n$	$[1]$	$5 n / 2$	$[1]$	$8 n / 3$	$O(n) \times O\left(n^{2}\right)$	
cubic 3-conn.	$n / 2$	$[3]$	$n / 2$	$[2]$	$n / 2$	$[2]$	
triangulation	$2 n$	$[4]$	$7 n / 3$	$[4]$	$8 n / 3[5]$	$2 O(n \log n) \times O(n)$	
4-conn. triang.	$2 n$	$[4]$	$9 n / 3$	$[4]$	$5 n / 2$	$O(n) \times O\left(n^{2}\right)$	
planar	$2 n$	$[4]$	$8 n / 3$	$[4]$			

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher \& Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

New Results

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	$\vartheta / 2$ [1]	$\vartheta / 2 \quad[1]$	$3 n / 4$	$n \times n$
			$\vartheta / 2$ [6]	quasipolynomial
outerplanar	$n \quad$ [1]		$7 n / 4$	$O(n) \times O\left(n^{2}\right)$
max. outerp.	n [1]	$n \quad$ [1]	$3 n / 2$ [6]	$O(n) \times O\left(n^{2}\right)$
3-trees	$2 n \quad[1]$	$2 n \quad$ [1]	$8 n / 3$ [6]	$O(n) \times O\left(n^{2}\right)$
2-connected	$2 n \quad[1]$			
3-connected	$2 n \quad[1]$	$5 n / 2$ [1]	$8 n / 3$	$O(n) \times O\left(n^{2}\right)$
cubic 3-conn.	$n / 2$ [3]	$n / 2 \quad$ [2]	$n / 2$ [2]	$O(n) \times O(n)$
triangulation	$2 n \quad[4]$	$7 n / 3$ [4]	$8 n / 3$ [5]	$2^{O}(n \log n)$
4-conn. triang.	$2 n \quad[4]$	$9 n / 3$ [4]	$5 n / 2$	$O(n) \times O\left(n^{2}\right)$
planar	$2 n \quad[4]$	$8 n / 3$ [4]	$17 n / 6$	$O(n) \times O\left(n^{2}\right)$

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher \& Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

New Results

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	$\vartheta / 2$ [1]	$\vartheta / 2$	$3 n / 4$	$n \times n$
			$\vartheta / 2$ [6]	quasipolynomial
outerplanar	n [1]		$7 n / 4$	$O(n) \times O\left(n^{2}\right)$
max. outerp. 3-trees	$\begin{array}{ll}n & {[1]} \\ 2 n & {[1]}\end{array}$	$n \quad$ [1]	$3 n / 2$ [6]	$O(n) \times O\left(n^{2}\right)$
		$2 n \quad$ 11]	$8 n / 3$ [6]	$O(n) \times O\left(n^{2}\right)$
2-connected	$\begin{array}{ll} 2 n & {[1]} \\ 2 n & {[1]} \end{array}$		$17 n / 6$	$O(n) \times O\left(n^{2}\right)$
3-connected	$2 n \quad[1]$	$5 n / 2$ [1]	$8 n / 3$	$O(n) \times O\left(n^{2}\right)$
cubic 3-conn.	$n / 2$	$n / 2 \quad$ [2]	$n / 2$ [2]	$O(n) \times O(n)$
triangulation	$2 n \quad[4]$	$7 n / 3$	$8 n / 3$ [5]	$2^{O}(n \log n)$
4-conn. triang.	$2 n \quad[4]$	$9 n / 3$ [4]	$5 n / 2$	$O(n) \times O\left(n^{2}\right)$
planar	$2 n$	$8 n / 3$ [4]	$17 n / 6$	$O(n) \times O\left(n^{2}\right)$

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher \& Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

