

Chair for **INFORMATICS I** Efficient Algorithms and **Knowledge-Based Systems**

Drawing Planar Graphs with Few Segments on the Grid

Philipp Kindermann Universität Würzburg

Tamara Mchedlidze

joint work with

Thomas Schneck Antonios Symvonis

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

of geometric entities in a drawing

(strong) line cover number

of geometric entities in a drawing

(strong) line cover number

of geometric entities in a drawing

of geometric entities in a drawing

(strong) line cover number

segment number

of geometric entities in a drawing

(strong) line cover number

segment number

of geometric entities in a drawing

(strong) line cover number

segment number

of geometric entities in a drawing

(strong) line cover number

segment number

of geometric entities in a drawing

(strong) line cover number

segment number

of geometric entities in a drawing

(strong) line cover number

segment number

of geometric entities in a drawing

(strong) line cover number 7 6

segment number

arc number

of geometric entities in a drawing

(strong) line cover number 7 6

segment number

arc number

of geometric entities in a drawing

(strong) line cover number

segment number

arc number

of geometric entities in a drawing

(strong) line cover number

segment number

arc number

of geometric entities in a drawing

(strong) line cover number 7 6

segment number

arc number

(strong) line cover number

of geometric entities in a drawing

6

slope number

segment number

7

arc number

(strong) line cover number

of geometric entities in a drawing

6

slope number

segment number

7

arc number

(strong) line cover number

of geometric entities in a drawing

6

slope number

segment number

7

all other numbers are lower bounds

arc number

Class	Segments	
	Lower	Upper
	l	I

Class	Segments		
	Lower	Upper	
tree	θ/2 [1]	ϑ/2 [1]	
[1] Dujmović et a	1. 2007		

Class	Segments		
	Lower	Upper	
tree	θ/2 [1]	ϑ/2 [1]	
outerplanar	n [1]		
[1] Dujmović et a	1. 2007		

Class	Segments		
	Lower	Upper	r
tree	θ/2 [1]	ϑ/2	[1]
outerplanar	n [1]		
max. outerp.	n [1]	n	[1]
[1] Dujmović et a	1. 2007		

Class	Segments		
	Lower	Upper	
tree	θ/2 [1]	ϑ/2 [1]	
outerplanar	n [1]		
max. outerp.	n [1]	<i>n</i> [1]	
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	
[1] Dujmović et a	1. 2007		

Class	Segments			
	Lowe	er	Upper	-
tree	ϑ/2 [[1]	ϑ/2	[1]
outerplanar	n [[1]		
max. outerp.	n [[1]	п	[1]
3-trees	2 <i>n</i> [[1]	2 <i>n</i>	[1]
2-connected	2 <i>n</i> [[1]		

Class	Segments			
	Lower	Upper		
tree	θ/2 [1]	ϑ/2 [1]		
outerplanar	n [1]			
max. outerp.	n [1]	<i>n</i> [1]		
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		

Class	Segments		
	Lower	Upper	
tree	ϑ/2 [1]	ϑ/2 [1]	
outerplanar	n [1]		
max. outerp.	n [1]	<i>n</i> [1]	
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	
2-connected	2 <i>n</i> [1]		
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]	
cubic 3-conn.	n/2 [3]	<i>n</i> /2 [2]	

[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

Class	Segments			
	Lower	Upper		
tree	θ/2 [1]	ϑ/2 [1]		
outerplanar	n [1]			
max. outerp.	n [1]	<i>n</i> [1]		
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	<i>n</i> /2 [2]		
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]		

Class	Segments		
	Lower	Upper	
tree	ϑ/2 [1]	ϑ/2 [1]	
outerplanar	n [1]		
max. outerp.	n [1]	<i>n</i> [1]	
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	
2-connected	2 <i>n</i> [1]		
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]	
cubic 3-conn.	n/2 [3]	n/2 [2]	
triangulation	2 <i>n</i> [4]	7n/3 [4]	
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]	

Class	Segments		
	Lower	Upper	
tree	θ/2 [1]	ϑ/2 [1]	
outerplanar	n [1]		
max. outerp.	n [1]	n [1]	
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	
2-connected	2 <i>n</i> [1]		
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]	
cubic 3-conn.	n/2 [3]	n/2 [2]	
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]	
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]	

Class	Segr	nents	Grid	Segments
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	ϑ/2 [1]		
outerplanar	<i>n</i> [1]			
max. outerp.	n [1]	n [1]		
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	<i>n</i> /2 [2]		
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]		
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	ϑ/2 [1]	ϑ/2 [1]		
outerplanar	n [1]			
max. outerp.	n [1]	n [1]		
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]		
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	ϑ/2 [1]		
outerplanar	n [1]			
max. outerp.	n [1]	<i>n</i> [1]		
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	<i>n</i> /2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O}(n\log n)$
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	ϑ/2 [1]	3 <i>n</i> /4 [6]	$O(n^2) \times O(n^{1.58})$
outerplanar	n [1]			
max. outerp.	n [1]	n [1]		
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	<i>n</i> /2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O}(n\log n)$
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	ϑ/2 [1]	3n/4 [6] ϑ/2 [6]	$O(n^2) \times O(n^{1.58})$ quasipolynomial
outerplanar	n [1]			
max. outerp.	n [1]	n [1]		
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	<i>n</i> /2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O}(n\log n)$
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	θ/2 [1]	3 <i>n</i> /4 [6] <i>v</i> /2 [6]	$\begin{array}{ c }O(n^2) \times O(n^{1.58})\\ \text{quasipolynomial}\end{array}$
outerplanar	n [1]			
max. outerp.	n [1]	n [1]	3 <i>n</i> /2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O}(n\log n)$
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	θ/2 [1]	3n/4 [6] v/2 [6]	$\begin{array}{ c } O(n^2) \times O(n^{1.58}) \\ \text{quasipolynomial} \end{array}$
outerplanar	n [1]			
max. outerp.	n [1]	<i>n</i> [1]	3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O}(n\log n)$
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	ϑ/2 [1]	3n/4 [6] ϑ/2 [6]	$O(n^2) \times O(n^{1.58})$ quasipolynomial
outerplanar	n [1]			
max. outerp.	n [1]	n [1]	3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O}(n\log n)$
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	ϑ/2 [1]	3n/4 [6] ϑ/2 [6]	$O(n^2) \times O(n^{1.58})$ guasipolynomial
outerplanar	n [1]		,	
max. outerp.	<i>n</i> [1]	n [1]	3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O}(n\log n)$
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

Tree Drawings Tree T *n* vtcs D О

Tree *T n* vtcs

Remove β deg-2 vtcs

Tree *T n* vtcs

 $\Rightarrow \text{Tree } T'$ $n - \beta \text{ vtcs}$

Remove β deg-2 vtcs

Tree *T n* vtcs

 $\Rightarrow \text{Tree } T'$ $n - \beta \text{ vtcs}$

Remove β deg-2 vtcs

 α leaves

Tree *T n* vtcs

 $\Rightarrow \text{Tree } T'$ $n - \beta \text{ vtcs}$

Remove β deg-2 vtcs

 α leaves

Tree *T n* vtcs

 $\Rightarrow \text{Tree } T'$ $n - \beta \text{ vtcs}$

Remove β deg-2 vtcs

 α leaves

Tree *T n* vtcs

 $\Rightarrow \text{Tree } T'$ $n - \beta \text{ vtcs}$

Remove β deg-2 vtcs

Remove α leaves

Tree *T n* vtcs

 $\Rightarrow \text{Tree } T'$ $n - \beta \text{ vtcs}$

 $\Rightarrow \text{Tree } T'' \\ n - \alpha - \beta \text{ vtcs}$

Remove β deg-2 vtcs

Remove α leaves

Tree *T n* vtcs

 $\Rightarrow \text{Tree } T'$ $n - \beta \text{ vtcs}$

$$\Rightarrow \text{Tree } T'' \\ n - \alpha - \beta \text{ vtcs}$$

Remove β deg-2 vtcs

Remove α leaves

 $n - \alpha - \beta$ segment

Tree *T n* vtcs

 $\Rightarrow \text{Tree } T'$ $n - \beta \text{ vtcs}$

 $\Rightarrow \text{Tree } T'' \\ n - \alpha - \beta \text{ vtcs}$

Remove β deg-2 vtcs

Remove α leaves + $\alpha/2$ segments

 $n - \alpha - \beta$ segment
Tree *T n* vtcs

 $\Rightarrow \text{Tree } T'$ $n - \beta \text{ vtcs}$

 $\Rightarrow \text{Tree } T'' \\ n - \alpha - \beta \text{ vtcs}$

Remove β deg-2 vtcs

Remove α leaves

+ $\alpha/2$ segments

Tree *T n* vtcs

 $\Rightarrow \text{Tree } T'$ $n - \beta \text{ vtcs}$

 $\Rightarrow \text{Tree } T'' \\ n - \alpha - \beta \text{ vtcs}$

Remove β deg-2 vtcs + 0 segments

Remove α leaves + $\alpha/2$ segments

Tree *T n* vtcs

 $\Rightarrow \text{Tree } T'$ $n - \beta \text{ vtcs}$

 $\Rightarrow \text{Tree } T'' \\ n - \alpha - \beta \text{ vtcs}$

Remove β deg-2 vtcs

+ 0 segments

Remove α leaves + $\alpha/2$ segments

segments

Tree *T n* vtcs

 $\Rightarrow \text{Tree } T'$ $n - \beta \text{ vtcs}$

 $\Rightarrow \text{Tree } T'' \\ n - \alpha - \beta \text{ vtcs}$

Remove β deg-2 vtcs

+ 0 segments

Remove α leaves + $\alpha/2$ segments

 $n - \alpha - \beta$ segment

Tree *T n* vtcs

 $\Rightarrow \text{Tree } T'$ $n - \beta \text{ vtcs}$

 $\Rightarrow \text{Tree } T'' \\ n - \alpha - \beta \text{ vtcs}$

 $\alpha > (n-\beta)/2$

Remove β deg-2 vtcs

+ 0 segments

Remove α leaves + $\alpha/2$ segments

 $\frac{1}{n-\alpha/2-\beta}$

segments

Tree *T n* vtcs

 $\Rightarrow \text{Tree } T'$ $n - \beta \text{ vtcs}$

 $\Rightarrow \text{Tree } T'' \\ n - \alpha - \beta \text{ vtcs}$

 $\alpha > (n-\beta)/2$

Remove β deg-2 vtcs

+ 0 segments

Remove α leaves + $\alpha/2$ segments

Tree Drawings

Tree Drawings

 v_{o}

 v_{o}

(2) Layout $v + \overset{\wedge}{\Delta} \overset{\wedge}{\Delta} \overset{\wedge}{\Delta} \overset{\wedge}{\Delta}$

- (1) Draw $\mathring{\Delta} \mathring{\Delta} \mathring{\Delta} \mathring{\Delta}$
- (2) Layout $v + \Delta \Delta \Delta \Delta$
- (3) Add 🛛

- (1) Draw $\mathring{\Delta} \mathring{\Delta} \mathring{\Delta} \mathring{\Delta}$
- (2) Layout $v + \overset{\wedge}{\Delta} \overset{\wedge}{\Delta} \overset{\wedge}{\Delta} \overset{\wedge}{\Delta}$
- (3) Add 🛛

- (1) Draw $\mathring{\Delta} \mathring{\Delta} \mathring{\Delta} \mathring{\Delta}$
- (2) Layout $v + \overset{\wedge}{\Delta} \overset{\wedge}{\Delta} \overset{\wedge}{\Delta} \overset{\wedge}{\Delta}$
- (3) Add 🛛

- (1) Draw $\mathring{\Delta} \mathring{\Delta} \mathring{\Delta} \mathring{\Delta}$
- (2) Layout $v + \overset{\wedge}{\Delta} \overset{\wedge}{\Delta} \overset{\wedge}{\Delta} \overset{\wedge}{\Delta}$
- (3) Add 🛛

- Tree Drawings
- (1) Draw $\mathring{\Delta} \mathring{\Delta} \mathring{\Delta} \mathring{\Delta}$
- (2) Layout $v + \overset{\wedge}{\square} \overset{\wedge}{\square} \overset{\wedge}{\square} \overset{\wedge}{\square}$
- (3) Add 🛛
- (4) Sort by #

- Tree Drawings
- (1) Draw $\mathring{\Delta} \mathring{\Delta} \mathring{\Delta} \mathring{\Delta}$
- (2) Layout $v + \overset{\wedge}{\square} \overset{\wedge}{\square} \overset{\wedge}{\square} \overset{\wedge}{\square}$
- (3) Add 🛛
- (4) Sort by #

- (4) Sort by #
- (5) Place + on common segments in order

- (4) Sort by #
- (5) Place + on common segments in order

- (4) Sort by #
- (5) Place + on common segments in order

- (4) Sort by #
- (5) Place + on common segments in order

- (4) Sort by #
- (5) Place + on common segments in order

- (4) Sort by #
- (5) Place + on common segments in order

- (4) Sort by #
- (5) Place + on common segments in order

- (4) Sort by #
- (5) Place + □ on common segments in order

Improved Results

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	ϑ/2 [1]	$\frac{3n}{4}$ [6] $\frac{9}{2}$ [6]	$O(n^2) \times O(n^{1.58})$ quasipolynomial
outerplanar	n [1]			
max. outerp.	n [1]	n [1]	3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	<i>n</i> /2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O}(n\log n)$
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

Improved Results

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	ϑ/2 [1]	$\vartheta/2$ [1]	3n/4	$n \times n$
outerplanar	n [1]	, , ,	V /2 [6]	quasipolynomial
max. outerp.	n [1]	<i>n</i> [1]	3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	<i>n</i> /2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O}(n\log n)$
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

[Chiang, Lin, Lu '05]

[Chiang, Lin, Lu '05]

neighbors of *v* in circ. order: (1) parent

[Chiang, Lin, Lu '05]

- (1) parent
- (2) $N^+(v)$: diff. subtree (left)

[Chiang, Lin, Lu '05]

- (1) parent
- (2) $N^+(v)$: diff. subtree (left)

[Chiang, Lin, Lu '05]

- (1) parent
- (2) $N^+(v)$: diff. subtree (left)

[Chiang, Lin, Lu '05]

- (1) parent
- (2) $N^+(v)$: diff. subtree (left)
- (3) children

[Chiang, Lin, Lu '05]

- (1) parent
- (2) $N^+(v)$: diff. subtree (left)
- (3) children
- (4) $N^{-}(v)$: diff. subtree (right)

[Chiang, Lin, Lu '05]

- (1) parent
- (2) $N^+(v)$: diff. subtree (left)
- (3) children
- (4) $N^{-}(v)$: diff. subtree (right)

[Chiang, Lin, Lu '05]

- (1) parent
- (2) $N^+(v)$: diff. subtree (left)
- (3) children
- (4) $N^{-}(v)$: diff. subtree (right)

[Angelini et al. '12]

Assign angle interval to each vtx

Slope-Disjoint Drawing of a Tree [Angelini et al. '12]

Assign angle interval to each vtx

[Angelini et al. '12]

Assign angle interval to each vtx All segments in T[v] in interval

[Angelini et al. '12]

Assign angle interval to each vtx All segments in T[v] in interval

[Angelini et al. '12]

Assign angle interval to each vtx All segments in T[v] in interval

[Angelini et al. '12]

[Angelini et al. '12]

[Angelini et al. '12]

[Angelini et al. '12]

[Angelini et al. '12]

Assign angle interval to each vtx All segments in T[v] in interval Intervals of children: disjoint subintervals that contain parent edge

[Hossain & Rahman '15]

Slope-disjoint drawing of orderly spanning tree on $O(n) \times O(n^2)$ grid \Rightarrow planar (monotone) drawing on $O(n) \times O(n^2)$ grid

[Angelini et al. '12]

Assign angle interval to each vtx All segments in T[v] in interval Intervals of children: disjoint subintervals that contain parent edge

[Hossain & Rahman '15]

Slope-disjoint drawing of orderly spanning tree on $O(n) \times O(n^2)$ grid \Rightarrow planar (monotone) drawing on $O(n) \times O(n^2)$ grid

doesn't change the slopes!

ccw pre-order traversal reuse slope whenever possible

ccw pre-order traversal reuse slope whenever possible

ccw pre-order traversal reuse slope whenever possible

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

highest slope: *n*

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

highest slope: *n* max. width: *n*

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

highest slope: *n* max. width: *n*

$$\Rightarrow n \times n^2$$
 grid

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

highest slope: *n* max. width: *n*

 \Rightarrow *n* × *n*² grid , 1 segment per leaf

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

highest slope: *n* max. width: *n*

 $\Rightarrow n \times n^2$ grid , 1 segment per leaf

[Miura, Azuma, Nishizeki '05]

Every Schnyder tree is an orderly spanning tree

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

highest slope: *n* max. width: *n*

 \Rightarrow *n* × *n*² grid , 1 segment per leaf

[Miura, Azuma, Nishizeki '05]

Every Schnyder tree is an orderly spanning tree

*T*₁, *T*₂, *T*₃ Schnyder realizer of 3-conn. planar graph \Rightarrow ≤ 2*n* + 1 leaves in total in *T*₁, *T*₂, *T*₃

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

highest slope: *n* max. width: *n*

 \Rightarrow *n* × *n*² grid , 1 segment per leaf

[Miura, Azuma, Nishizeki '05]

Every Schnyder tree is an orderly spanning tree

*T*₁, *T*₂, *T*₃ Schnyder realizer of 3-conn. planar graph \Rightarrow ≤ 2*n* + 1 leaves in total in *T*₁, *T*₂, *T*₃

3-conn. planar graph $\Rightarrow (8n - 14)/3$ segments, $O(n) \times O(n^2)$ grid

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	ϑ/2 [1]	3n/4 v/2 [6]	$n \times n$ quasipolynomial
outerplanar	n [1]			
max. outerp.	n [1]	n [1]	3 <i>n</i> /2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O}(n\log n)$
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	ϑ/2 [1]	ϑ/2 [1]	3n/4 ϑ/2 [6]	$n \times n$ quasipolynomial
outerplanar	n [1]			
max. outerp.	n [1]	n [1]	3 <i>n</i> /2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]	8n/3	$O(n) \times O(n^2)$
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7n/3 [4]	8n/3 [5]	$2^{O}(n\log n)$
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	ϑ/2 [1]	ϑ/2 [1]	3n/4 v/2 [6]	$n \times n$ quasipolynomial
outerplanar	n [1]		7n/4	$O(n) \times O(n^2)$
max. outerp.	n [1]	n [1]	3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]	8n/3	$O(n) \times O(n^2)$
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O}(n\log n)$
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	ϑ/2 [1]	ϑ/2 [1]	3n/4 ϑ/2 [6]	$n \times n$ quasipolynomial
outerplanar	n [1]		7n/4	$O(n) \times O(n^2)$
max. outerp.	n [1]	n [1]	3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]	8n/3	$O(n) \times O(n^2)$
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O}(n\log n)$
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]	5 <i>n</i> /2	$O(n) \times O(n^2)$
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	ϑ/2 [1]	ϑ/2 [1]	3n/4 v/2 [6]	$n \times n$ quasipolynomial
outerplanar	n [1]		7n/4	$O(n) \times O(n^2)$
max. outerp.	n [1]	n [1]	3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]	8n/3	$O(n) \times O(n^2)$
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O}(n\log n)$
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]	5 <i>n</i> /2	$O(n) \times O(n^2)$
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]	17n/6	$O(n) \times O(n^2)$
New Results

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	ϑ/2 [1]	ϑ/2 [1]	3n/4 ϑ/2 [6]	$n \times n$ quasipolynomial
outerplanar	n [1]		7n/4	$O(n) \times O(n^2)$
max. outerp.	n [1]	n [1]	3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]		17n/6	$O(n) \times O(n^2)$
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]	8n/3	$O(n) \times O(n^2)$
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O}(n\log n)$
4-conn. triang.	2 <i>n</i> [4]	9n/3 [4]	5 <i>n</i> /2	$O(n) \times O(n^2)$
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]	17n/6	$O(n) \times O(n^2)$

[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013
[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017