Variants of the Segment Number of a Graph

Yoshio Okamoto

University of Electro-Communications, Chōfu, Japan and RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

Alexander Ravsky

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics,
National Academy of Science of Ukraine, Lviv, Ukraine

Alexander Wolff

Julius-Maximilians-Universität Würzburg, Germany

Measures of Visual Complexity

Measures of Visual Complexity

Slope number
[Wade \& Chu 1994]

Measures of Visual Complexity

Slope number
[Wade \& Chu 1994]
Arc number
[Schulz 2015]

Measures of Visual Complexity

Slope number [Wade \& Chu 1994]

Arc number [Schulz 2015]

Segment number $\left(\operatorname{seg}_{2}(G)\right)$ [Dujmović et al. 2007]

Measures of Visual Complexity

Measures of Visual Complexity

Line cover number
[Chaplick et al. 2016]

Measures of Visual Complexity

$\rho_{2}^{1}(G)$
[Scherm 2016]
Line cover number
[Chaplick et al. 2016]

Measures of Visual Complexity

$\rho_{2}^{1}(G)$

[Scherm 2016]
Line cover number
[Chaplick et al. 2016]

Segment Number Variants of Graphs

The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G.

Segment Number Variants of Graphs

The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G. $\operatorname{seg}_{2}(G)$, where G is planar.

Segment Number Variants of Graphs

The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G. $\operatorname{seg}_{2}(G)$, where G is planar.

Segment Number Variants of Graphs

The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G. $\operatorname{seg}_{2}(G)$, where G is planar.
$\operatorname{seg}_{\angle}(G)$, where G is planar, drawings are 2D, bends are OK, but no crossings.

Segment Number Variants of Graphs

The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G. $\operatorname{seg}_{2}(G)$, where G is planar.
$\operatorname{seg}_{\angle}(G)$, where G is planar, drawings are 2D, bends are OK, but no crossings.

Segment Number Variants of Graphs

The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G. $\operatorname{seg}_{2}(G)$, where G is planar.
$\operatorname{seg}_{\angle}(G)$, where G is planar, drawings are 2D, bends are OK, but no crossings.
$\operatorname{seg}_{3}(G)$, where drawings are 3D, no bends, no crossings.

$\operatorname{seg}_{2}\left(K_{4}\right)=6$

$\operatorname{seg}_{\angle}\left(K_{4}\right)=5$

Segment Number Variants of Graphs

The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G. $\operatorname{seg}_{2}(G)$, where G is planar.
$\operatorname{seg}_{\angle}(G)$, where G is planar, drawings are 2D, bends are OK, but no crossings.
$\operatorname{seg}_{3}(G)$, where drawings are 3D, no bends, no crossings.

$\operatorname{seg}_{2}\left(K_{4}\right)=6$

$\operatorname{seg}_{\angle}\left(K_{4}\right)=5$

$\operatorname{seg}_{3}\left(K_{3,3}\right)=7$

Segment Number Variants of Graphs

The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G. $\operatorname{seg}_{2}(G)$, where G is planar.
$\operatorname{seg}_{\angle}(G)$, where G is planar, drawings are 2D, bends are OK, but no crossings.
$\operatorname{seg}_{3}(G)$, where drawings are 3D, no bends, no crossings.
$\operatorname{seg}_{x}(G)$, where drawings are 2D, crossings are OK, but no bends and no overlaps.

$\operatorname{seg}_{2}\left(K_{4}\right)=6$

$\operatorname{seg} \angle\left(K_{4}\right)=5$

$\operatorname{seg}_{3}\left(K_{3,3}\right)=7$

Segment Number Variants of Graphs

The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G. $\operatorname{seg}_{2}(G)$, where G is planar.
$\operatorname{seg}_{\angle}(G)$, where G is planar, drawings are 2D, bends are OK, but no crossings.
$\operatorname{seg}_{3}(G)$, where drawings are 3D, no bends, no crossings.
$\operatorname{seg}_{x}(G)$, where drawings are 2D, crossings are OK, but no bends and no overlaps.

$\operatorname{seg}_{2}\left(K_{4}\right)=6$

$\operatorname{seg} \angle\left(K_{4}\right)=5$

$\operatorname{seg}_{3}\left(K_{3,3}\right)=7$

$\operatorname{seg}_{\times}\left(K_{3,3}\right)=6$

Relations Between Segment Number Variants

$\operatorname{seg}_{\times}(G) \leq \operatorname{seg}_{3}(G)$

Relations Between Segment Number Variants

$\operatorname{seg}_{\times}(G) \leq \operatorname{seg}_{3}(G)$
$\operatorname{seg}_{3, \times, \angle}(G) \leq \operatorname{seg}_{2}(G)$ for any planar G.

Relations Between Segment Number Variants

$\operatorname{seg}_{\times}(G) \leq \operatorname{seg}_{3}(G)$
$\operatorname{seg}_{3, \times, \angle}(G) \leq \operatorname{seg}_{2}(G)$ for any planar G.
$\operatorname{seg}_{2}(G) / \operatorname{seg}_{3, \times, \angle}(G)=2+o(1)$ for a family of planar G.

Relations Between Segment Number Variants

$\operatorname{seg}_{\times}(G) \leq \operatorname{seg}_{3}(G)$
$\operatorname{seg}_{3, \times, \angle}(G) \leq \operatorname{seg}_{2}(G)$ for any planar G.
$\operatorname{seg}_{2}(G) / \operatorname{seg}_{3, \times, \angle}(G)=2+o(1)$ for a family of planar G.

Relations Between Segment Number Variants

$\operatorname{seg}_{\times}(G) \leq \operatorname{seg}_{3}(G)$
$\operatorname{seg}_{3, \times, \angle}(G) \leq \operatorname{seg}_{2}(G)$ for any planar G.
$\operatorname{seg}_{2}(G) / \operatorname{seg}_{3, \times, \angle}(G)=2+o(1)$ for a family of planar G.

Relations Between Segment Number Variants

 $\operatorname{seg}_{x}(G) \leq \operatorname{seg}_{3}(G)$$\operatorname{seg}_{3, \times, \angle}(G) \leq \operatorname{seg}_{2}(G)$ for any planar G.
$\operatorname{seg}_{2}(G) / \operatorname{seg}_{3, \times, L}(G)=2+o(1)$ for a family of planar G.

Relations Between Segment Number Variants $\operatorname{seg}_{x}(G) \leq \operatorname{seg}_{3}(G)$
$\operatorname{seg}_{3, \times, \angle}(G) \leq \operatorname{seg}_{2}(G)$ for any planar G.
$\operatorname{seg}_{2}(G) / \operatorname{seg}_{3, \times, L}(G)=2+o(1)$ for a family of planar G.

Open Problem. Find upper bounds for $\operatorname{seg}_{2}(G) / \operatorname{seg}_{3, \times, \angle}(G)$ for planar G.

Relations Between Segment Number Variants

Relations Between Segment Number Variants

Relations Between Segment Number Variants

G_{k}

Relations Between Segment Number Variants

G_{k}

$K_{2,3}$

G

Relations Between Segment Number Variants

G_{k}

$K_{2,3}$

G

$$
\frac{\operatorname{seg}_{3}(G)}{\operatorname{seg}_{\times}(G)}=\frac{7 k / 2}{5 k / 2+3} \rightarrow \frac{7}{5}
$$

Relations Between Segment Number Variants

G_{k}

$K_{2,3}$

G

$$
\frac{\operatorname{seg}_{3}(G)}{\operatorname{seg}_{\times}(G)}=\frac{7 k / 2}{5 k / 2+3} \rightarrow \frac{7}{5}
$$

Open Problem. Can you do better?

Bounds on segment numbers of cubic graphs

G is a cubic graph with $n \geq 6$ vertices. $n / 2 \leq \operatorname{seg}_{2,3, \angle, \times}(G) \leq 3 n / 2$ and $\operatorname{seg}_{2,3, \angle, \times}\left(\sqcup K_{4}\right)=3 n / 2$.

Bounds on segment numbers of cubic graphs

G is a cubic graph with $n \geq 6$ vertices. $n / 2 \leq \operatorname{seg}_{2,3, \angle, \times}(G) \leq 3 n / 2$ and $\operatorname{seg}_{2,3, \angle, \times}\left(\sqcup K_{4}\right)=3 n / 2$.

γ	$\operatorname{seg}_{2}(G)^{*}$	$\operatorname{seg}_{3}(G)$	$\operatorname{seg}_{\angle}(G)^{*}$	$\operatorname{seg}_{x}(G)$
1	$5 n / 6 . .3 n / 2$	$5 n / 6^{*} . .7 n / 5$	$5 n / 6 . .3 n / 2$	$5 n / 6^{*} . .7 n / 5$
2	$3 n / 4 . .3 n / 2$	$5 n / 6 . .7 n / 5$	$3 n / 4 . . n+1$	$3 n / 4^{*} . . n+2$
3	$n / 2+3^{* *}$	$7 n / 10 . .7 n / 5$	$n / 2+3$	$n / 2 .$.
H	$3 n / 4.3 n / 2$	$5 n / 6 . . n+1$	$3 n / 4 . . n+1$	$3 n / 4^{*} . . n+2$

* For planar G.
** by [Durocher et al. 2013; Igamberdiev et al. 2017]

Computational Complexity

Given a planar graph G, it is $\exists \mathbb{R}$-hard to compute the slope number slope(G). [Hoffmann 2017]

Computational Complexity

Given a planar graph G, it is $\exists \mathbb{R}$-hard to compute the slope number slope(G). [Hoffmann 2017]
Given a planar graph G and an integer k, it is $\exists \mathbb{R}$-hard to decide whether $\rho_{2}^{1}(G) \leq k$ and whether $\rho_{3}^{1}(G) \leq k$.
[Chaplick et al. 2017]

Computational Complexity

Given a planar graph G, it is $\exists \mathbb{R}$-hard to compute the slope number slope (G).
Given a planar graph G and an integer k, it is $\exists \mathbb{R}$-hard to decide whether $\rho_{2}^{1}(G) \leq k$ and whether $\rho_{3}^{1}(G) \leq k$.
[Chaplick et al. 2017]
Given a planar graph G and an integer k, it is $\exists \mathbb{R}$-complete to decide whether

Computational Complexity

Given a planar graph G, it is $\exists \mathbb{R}$-hard to compute the slope number slope (G).
Given a planar graph G and an integer k, it is $\exists \mathbb{R}$-hard to decide whether $\rho_{2}^{1}(G) \leq k$ and whether $\rho_{3}^{1}(G) \leq k$.

Given a planar graph G and an integer k, it is $\exists \mathbb{R}$-complete to decide whether

- $\operatorname{seg}_{2}(G) \leq k$,
- $\operatorname{seg}_{3}(G) \leq k$,
- $\operatorname{seg}_{\angle}(G) \leq k$,
- $\operatorname{seg}_{\times}(G) \leq k$.

Arrangement Graphs

Arrangement Graphs

Arrangement graph G

Arrangement Graphs

Arrangement graph G
Augmented arrangement graph G^{\prime}

Computational Complexity

The Arrangement Graph Recognition problem is to decide whether a given graph is the arrangement graph of some set of lines.

Computational Complexity

The Arrangement Graph Recognition problem is to decide whether a given graph is the arrangement graph of some set of lines. It is $\exists \mathbb{R}$-complete.
[Eppstein 2014]

Computational Complexity

The Arrangement Graph Recognition problem is to decide whether a given graph is the arrangement graph of some set of lines. It is $\exists \mathbb{R}$-complete.
[Eppstein 2014]

Euclidean Pseudoline Stretchability is $\exists \mathbb{R}$-hard. [Matoušek 2014, Schaefer 2009]
A planar graph G is an arrangement graph on k lines
$\Leftrightarrow \rho_{2}^{1}\left(G^{\prime}\right) \leq k \quad$ [Chaplick et al. 2017]
$\Leftrightarrow \operatorname{seg}_{2}\left(G^{\prime}\right) \leq k$
$\Leftrightarrow \operatorname{seg}_{\angle}\left(G^{\prime}\right) \leq k$
$\Leftrightarrow \operatorname{seg}_{\times}\left(G^{\prime}\right) \leq k$.
Open problem. Is any variant of segment number FPT?

Lower Bounds for Cubic Graphs

Lower Bounds for Cubic Graphs

Flat vertex (f)

Lower Bounds for Cubic Graphs

Flat vertex (f)

Tripod vertex (t)

Lower Bounds for Cubic Graphs

Flat vertex (f)

Bend (b)

Tripod vertex (t)

Lemma.

Lower Bounds for Cubic Graphs

Flat vertex (f)

Bend (b)

Tripod vertex (t)

Lemma. For any straight-line drawing δ of a cubic graph with n vertices, $\operatorname{seg}(\delta)=n / 2+t(\delta)+b(\delta)$.

Connected Cubic Graphs

For any cubic connected graph G with $n \geq 6$ vertices, $\operatorname{seg}_{3}(G) \leq 7 n / 5$.

Connected Cubic Graphs

For any cubic connected graph G with $n \geq 6$ vertices, $\operatorname{seg}_{3}(G) \leq 7 n / 5$.

Connected Cubic Graphs

For any cubic connected graph G with $n \geq 6$ vertices, $\operatorname{seg}_{3}(G) \leq 7 n / 5$.

$$
\begin{gathered}
n=6 k-2 \\
\operatorname{seg}_{2,3, L, \times}(G)=5 k-1>5 n / 6
\end{gathered}
$$

Biconnected Cubic Graphs

For any cubic biconnected planar graph G with n vertices, $\operatorname{seg}_{\angle}(G) \leq n+1$. A corresponding drawing can be found in linear time.

Biconnected Cubic Graphs

For any cubic biconnected planar graph G with n vertices, $\operatorname{seg}_{\angle}(G) \leq n+1$. A corresponding drawing can be found in linear time.

[Liu et al. 1994]

Biconnected Cubic Graphs

For any cubic biconnected planar graph G with n vertices, $\operatorname{seg}_{\angle}(G) \leq n+1$. A corresponding drawing can be found in linear time.

[Liu et al. 1994]
Open Problem. What about 4-regular graphs? They have $2 n$ edges. If we bend every edge once, we already need $2 n$ segments - and not all 4 -regular graphs can be drawn with at most one bend per edge.

Hamiltonian Cubic Graphs

For any cubic Hamiltonian graph G with $n \geq 6$ vertices, $\operatorname{seg}_{3}(G) \leq n+1$.

Hamiltonian Cubic Graphs

For any cubic Hamiltonian graph G with $n \geq 6$ vertices, $\operatorname{seg}_{3}(G) \leq n+1$.

$$
n=4 k \quad \operatorname{seg}_{2, \angle, 3, \times}(G)=3 n / 4 .
$$

Hamiltonian Cubic Graphs

For any cubic Hamiltonian graph G with $n \geq 6$ vertices, $\operatorname{seg}_{3}(G) \leq n+1$.

$$
n=4 k \operatorname{seg}_{2, \angle, 3, \times}(G)=3 n / 4
$$

Each subgraph K^{\prime} has an extreme point of its convex hull not connected to $G-V\left(K^{\prime}\right)$. It is a tripod or a bend, so $t(\delta)+b(\delta) \geq k$ and, by Lemma, $\operatorname{seg}_{2,3, \angle, \times}(G) \geq$ $2 k+t(\delta)+b(\delta) \geq 3 k$.

Hamiltonian Cubic Graphs

For any cubic Hamiltonian graph G with $n \geq 6$ vertices, $\operatorname{seg}_{3}(G) \leq n+1$.

$$
n=4 k \operatorname{seg}_{2, \angle, 3, \times}(G)=3 n / 4
$$

Each subgraph K^{\prime} has an extreme point of its convex hull not connected to $G-V\left(K^{\prime}\right)$. It is a tripod or a bend, so $t(\delta)+b(\delta) \geq k$ and, by Lemma, $\operatorname{seg}_{2,3, \angle, \times}(G) \geq$ $2 k+t(\delta)+b(\delta) \geq 3 k$.

Hamiltonian Cubic Graphs

$$
k \geq 3, n=6 k, \operatorname{seg}_{3}(G)=5 n / 6, \operatorname{seg}_{\times}(G)=2 n / 3
$$

Hamiltonian Cubic Graphs

$$
k \geq 3, n=6 k, \operatorname{seg}_{3}(G)=5 n / 6, \operatorname{seg}_{\times}(G)=2 n / 3
$$

Open Problems: Improve Non-tight Bounds!

G is a cubic graph with $n \geq 6$ vertices. $n / 2 \leq \operatorname{seg}_{2,3, \angle, \times}(G) \leq 3 n / 2$ and $\operatorname{seg}_{2,3, \angle, \times}\left(\sqcup K_{4}\right)=3 n / 2$.

γ	$\operatorname{seg}_{2}(G)^{*}$	$\operatorname{seg}_{3}(G)$	$\operatorname{seg}_{\angle}(G)^{*}$	$\operatorname{seg}_{\times}(G)$
1	$5 n / 6 . .3 n / 2$	$5 n / 6^{*} . .7 n / 5$	$5 n / 6 . .3 n / 2$	$5 n / 6^{*} . .7 n / 5$
2	$3 n / 4 . .3 n / 2$	$5 n / 6 . .7 n / 5$	$3 n / 4 . . n+1$	$3 n / 4^{*} . . n+2$
3	$n / 2+3^{* *}$	$7 n / 10 . .7 n / 5$	$n / 2+3$	$n / 2 . . n+2$
H	$3 n / 4 . .3 n / 2$	$5 n / 6 . . n+1$	$3 n / 4 . . n+1$	$3 n / 4^{*} . . n+2$

* For planar G.
** by [Durocher et al. 2013; Igamberdiev et al. 2017]

Open Problems: Improve Non-tight Bounds!
G is a cubic graph with $n \geq 6$ vertices. $n / 2 \leq \operatorname{seg}_{2,3, \angle, \times}(G) \leq 3 n / 2$ and $\operatorname{seg}_{2,3, \angle, \times}\left(\sqcup K_{4}\right)=3 n / 2$.

γ	$\operatorname{seg}_{2}(G)^{*}$	$\operatorname{seg}_{3}(G)$	$\operatorname{seg}_{\angle}(G)^{*}$	$\operatorname{seg}_{\times}(G)$
1	$5 n / 6 . .3 n / 2$	$5 n / 6^{*} . .7 n / 5$	$5 n / 6 . .3 n / 2$	$5 n / 6^{*} . .7 n / 5$
2	$3 n / 4 . .3 n / 2$	$5 n / 6 . .7 n / 5$	$3 n / 4 . . n+1$	$3 n / 4^{*} . . n+2$
3	$n / 2+3^{* *}$	$7 n / 10 . .7 n / 5$	$n / 2+3$	$n / 2 .$.
H	$3 n / 4 . .3 n / 2$	$5 n / 6 . . n+1$	$3 n / 4 . . n+1$	$3 n / 4^{*} . . n+2$

* For planar G.
** by [Durocher et al. 2013; Igamberdiev et al. 2017]

