
Variants of the Segment Number of a Graph

Yoshio Okamoto

University of Electro-Communications, Chōfu, Japan and
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The segment number of a graph G is the minimum number of
segments constituting a straight-line drawing of G .

seg2(G ), where G is planar.

seg3(G ), where drawings are 3D, no bends, no crossings.

seg∠(G ), where G is planar, drawings are 2D, bends are OK,
but no crossings.

seg×(G ), where drawings are 2D, crossings are OK, but no
bends and no overlaps.

seg2(K4) = 6 seg∠(K4) = 5 seg3(K3,3) = 7 seg×(K3,3) = 6
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Relations Between Segment Number Variants

seg×(G ) ≤ seg3(G )

seg3,×,∠(G ) ≤ seg2(G ) for any planar G .

seg2(G )/ seg3,×,∠(G ) = 2 + o(1) for a family of planar G .

Open Problem. Find upper bounds for seg2(G )/ seg3,×,∠(G )
for planar G .
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=×
Gk K2,3 G

seg3(G )
seg×(G ) =

7k/2
5k/2+3 →

7
5 .

Open Problem. Can you do better?



Bounds on segment numbers of cubic graphs

G is a cubic graph with n ≥ 6 vertices.
n/2 ≤ seg2,3,∠,×(G ) ≤ 3n/2 and seg2,3,∠,×(tK4) = 3n/2.



Bounds on segment numbers of cubic graphs

γ seg2(G )∗ seg3(G ) seg∠(G )∗ seg×(G )

1 5n/6..3n/2 5n/6∗..7n/5 5n/6..3n/2 5n/6∗..7n/5
2 3n/4..3n/2 5n/6.. 7n/5 3n/4..n + 1 3n/4∗..n + 2
3 n/2 + 3∗∗ 7n/10..7n/5 n/2 + 3 n/2.. n + 2
H 3n/4..3n/2 5n/6..n + 1 3n/4..n + 1 3n/4∗..n + 2

G is a cubic graph with n ≥ 6 vertices.
n/2 ≤ seg2,3,∠,×(G ) ≤ 3n/2 and seg2,3,∠,×(tK4) = 3n/2.

* For planar G .
** by [Durocher et al. 2013; Igamberdiev et al. 2017]
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Computational Complexity

Given a planar graph G and an integer k, it is ∃R-hard to
decide whether ρ1

2(G ) ≤ k and whether ρ1
3(G ) ≤ k.
[Chaplick et al. 2017]

Given a planar graph G , it is ∃R-hard to compute the slope
number slope(G ). [Hoffmann 2017]

Given a planar graph G and an integer k,
it is ∃R-complete to decide whether

• seg2(G ) ≤ k,
• seg3(G ) ≤ k,
• seg∠(G ) ≤ k,
• seg×(G ) ≤ k.
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Arrangement graph G

Augmented arrangement
graph G ′
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Computational Complexity

The Arrangement Graph Recognition problem is to
decide whether a given graph is the arrangement graph of
some set of lines.

Euclidean Pseudoline Stretchability is ∃R-hard.

[Eppstein 2014]

⇑

[Matoušek 2014, Schaefer 2009]

It is ∃R-complete.

A planar graph G is an arrangement graph on k lines
⇔ ρ1

2(G ′) ≤ k
⇔ seg2(G ′) ≤ k
⇔ seg∠(G ′) ≤ k
⇔ seg×(G ′) ≤ k.

Open problem. Is any variant of segment number FPT?

[Chaplick et al. 2017]
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Lower Bounds for Cubic Graphs

For any straight-line drawing δ of a cubic graph
with n vertices, seg(δ) = n/2 + t(δ) + b(δ).

Tripod vertex (t)Bend (b)Flat vertex (f )

Lemma.
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Connected Cubic Graphs

· · ·

For any cubic connected graph G with n ≥ 6 vertices,
seg3(G ) ≤ 7n/5.

seg2,3,∠,×(G ) = 5k − 1 > 5n/6

n = 6k − 2
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Biconnected Cubic Graphs

For any cubic biconnected planar graph G with n vertices,
seg∠(G ) ≤ n + 1. A corresponding drawing can be found in
linear time.

Open Problem. What about 4-regular graphs? They have 2n
edges. If we bend every edge once, we already need 2n
segments – and not all 4-regular graphs can be drawn with at
most one bend per edge.

[Liu et al. 1994]
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Open Problems: Improve Non-tight Bounds!
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